
Package: tidywater (via r-universe)
February 21, 2025

Type Package

Title Water Quality Models for Drinking Water Treatment Processes

Version 0.7.0

URL https://github.com/BrownandCaldwell-Public/tidywater

BugReports https://github.com/BrownandCaldwell-Public/tidywater/issues

Description Provides multiple water chemistry-based models and
published empirical models in one standard format. Functions
can be chained together to model a complete treatment process
and are designed to work in a 'tidyverse' workflow. Models are
primarily based on these sources: Benjamin, M. M. (2002,
ISBN:147862308X), Crittenden, J. C., Trussell, R., Hand, D.,
Howe, J. K., & Tchobanoglous, G., Borchardt, J. H. (2012,
ISBN:9781118131473), USEPA. (2001)
<https://www.epa.gov/sites/default/files/2017-03/documents/wtp_model_v._2.0_
manual_508.pdf>.

License Apache License (>= 2) | MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports dplyr, tidyr, knitr, ggplot2, ggrepel, magrittr, purrr, furrr,
methods, rlang

RoxygenNote 7.3.2

Depends R (>= 2.10)

Suggests rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Date 2025-01-22

Config/pak/sysreqs libicu-dev

Repository https://brownandcaldwell-public.r-universe.dev

RemoteUrl https://github.com/brownandcaldwell-public/tidywater

RemoteRef HEAD

RemoteSha f52f2cdc332c1d2720df81d22465c2d23c7c6048

1

https://github.com/BrownandCaldwell-Public/tidywater
https://github.com/BrownandCaldwell-Public/tidywater/issues
https://www.epa.gov/sites/default/files/2017-03/documents/wtp_model_v._2.0_manual_508.pdf
https://www.epa.gov/sites/default/files/2017-03/documents/wtp_model_v._2.0_manual_508.pdf


2 Contents

Contents
balance_ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
balance_ions_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
balance_ions_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
biofilter_toc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
biofilter_toc_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
biofilter_toc_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
blend_waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
blend_waters_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
blend_waters_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
bromatecoeffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
calculate_corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
calculate_corrosion_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
calculate_corrosion_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
calculate_dic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
calculate_hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
chemdose_chlordecay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
chemdose_chlordecay_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
chemdose_chlordecay_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
chemdose_dbp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
chemdose_dbp_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
chemdose_dbp_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
chemdose_f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
chemdose_ph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
chemdose_ph_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
chemdose_ph_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
chemdose_toc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
chemdose_toc_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
chemdose_toc_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
chloramine_conv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
cl2coeffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
convert_units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
convert_water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
convert_watermg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
dbpcoeffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
dbp_correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
define_water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
define_water_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
define_water_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
discons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
dissolve_pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dissolve_pb_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
edwardscoeff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
leadsol_constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
mweights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
ozonate_bromate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
ozonate_bromate_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



balance_ions 3

ozonate_bromate_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
pac_toc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
pac_toc_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
pac_toc_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
plot_ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
pluck_water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
solvecost_chem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
solvecost_labor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
solvecost_power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
solvecost_solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
solvect_chlorine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
solvect_chlorine_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
solvect_o3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
solvect_o3_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
solvedose_alk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
solvedose_alk_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
solvedose_ph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
solvedose_ph_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
solvemass_chem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
solvemass_solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
solveresid_o3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
solveresid_o3_once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
summarize_wq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
water_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Index 94

balance_ions Add Na, K, Cl, or SO4 to balance overall charge in a water

Description

This function takes a water defined by define_water and balances charge.

Usage

balance_ions(water)

Arguments

water Water created with define_water, which may have some ions set to 0 when un-
known



4 balance_ions_chain

Details

If more cations are needed, sodium will be added, unless a number for sodium is already provided
and potassium is 0, then it will add potassium. Similarly, anions are added using chloride, unless
sulfate is 0. If calcium and magnesium are not specified when defining a water with define_water,
they will default to 0 and not be changed by this function. This function is purely mathematical.
User should always check the outputs to make sure values are reasonable for the input source water.

Value

A water class object with updated ions to balance water charge.

Examples

water_defined <- define_water(7, 20, 50, 100, 80, 10, 10, 10, 10, tot_po4 = 1) %>%
balance_ions()

balance_ions_chain Apply ‘balance_ions‘ within a dataframe and output a column of ‘wa-
ter‘ class to be chained to other tidywater functions

Description

This function allows balance_ions to be added to a piped data frame. Its output is a ‘water‘ class,
and can therefore be used with "downstream" tidywater functions.

Usage

balance_ions_chain(
df,
input_water = "defined_water",
output_water = "balanced_water"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

output_water name of the output column storing updated parameters with the class, water.
Default is "balanced_water".



balance_ions_once 5

Details

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with updated ions to balance water charge.

See Also

balance_ions

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(naoh = 5)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain(output_water = "balanced ions, balanced life") %>%
chemdose_ph_chain(input_water = "balanced ions, balanced life", naoh = 5)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(naoh = 5)

# Optional: explicitly close multisession processing
plan(sequential)

balance_ions_once Apply ‘balance_ions‘ function and output a dataframe



6 balance_ions_once

Description

This function allows balance_ions to be added to a piped data frame. tidywater functions cannot
be added after this function because they require a ‘water‘ class input.

Usage

balance_ions_once(df, input_water = "defined_water")

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

Details

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A dataframe with updated ions to balance water charge

See Also

balance_ions

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_once()

example_df <- water_df %>%
define_water_chain(output_water = "Different_defined_water_column") %>%
balance_ions_once(input_water = "Different_defined_water_column")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%



biofilter_toc 7

define_water_chain() %>%
balance_ions_once()

# Optional: explicitly close multisession processing
plan(sequential)

biofilter_toc Determine TOC removal from biofiltration using Terry & Summers
BDOC model

Description

This function applies the Terry model to a water created by define_water to determine biofiltered
DOC (mg/L).

Usage

biofilter_toc(water, ebct, ozonated = TRUE)

Arguments

water Source water object of class "water" created by define_water.

ebct The empty bed contact time (min) used for the biofilter

ozonated Logical; TRUE if the water is ozonated (default), FALSE otherwise

Value

A water class object with modeled DOC removal from biofiltration.

Source

Terry and Summers 2018

Examples

library(tidywater)
water <- define_water(ph = 7, temp = 25, alk = 100, toc = 5.0, doc = 4.0, uv254 = .1) %>%

biofilter_toc(ebct = 10, ozonated = FALSE)



8 biofilter_toc_chain

biofilter_toc_chain Apply ‘biofilter_toc‘ within a dataframe and output a column of ‘wa-
ter‘ class to be chained to other tidywater functions

Description

This function allows biofilter_toc to be added to a piped data frame. Its output is a ‘water‘ class,
and can therefore be used with "downstream" tidywater functions. TOC, DOC, and UV254 water
slots will be updated based on input EBCT and whether the water is ozonated.

Usage

biofilter_toc_chain(
df,
input_water = "defined_water",
output_water = "biofiltered_water",
ebct = 0,
ozonated = TRUE

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column indicating the EBCT
or whether the water is ozonated. and a column named for the set of coefficients
to use.

input_water name of the column of Water class data to be used as the input for this function.
Default is "defined_water".

output_water name of the output column storing updated parameters with the class, Water.
Default is "biofiltered_water".

ebct The empty bed contact time (min) used for the biofilter

ozonated Logical; TRUE if the water is ozonated (default), FALSE otherwise

Details

The data input comes from a ‘water‘ class column, as initialized in define_water_chain.

If the input data frame has column(s) named "ebct" or "ozonated", the function uses those as argu-
ments. Note: The function can use either a column or the direct function arguments, not both.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.



biofilter_toc_once 9

Value

A data frame containing a water class column with updated DOC, TOC, and UV254 water slots.

See Also

biofilter_toc

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
biofilter_toc_chain(input_water = "defined_water", ebct = 10, ozonated = FALSE)

example_df <- water_df %>%
define_water_chain() %>%
mutate(
ebct = c(10, 10, 10, 15, 15, 15, 20, 20, 20, 25, 25, 25),
ozonated = c(rep(TRUE, 6), rep(FALSE, 6))

) %>%
biofilter_toc_chain(input_water = "defined_water")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
biofilter_toc_chain(input_water = "defined_water", ebct = c(10, 20))

# Optional: explicitly close multisession processing
plan(sequential)

biofilter_toc_once Apply ‘biofilter_toc‘ function and output a data frame

Description

This function allows biofilter_toc to be added to a piped data frame. Its output is a data frame
with updated TOC, DOC, and BDOC

Usage

biofilter_toc_once(
df,
input_water = "defined_water",



10 biofilter_toc_once

ebct = 0,
ozonated = TRUE

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column indicating the EBCT
or whether the water is ozonated.

input_water name of the column of Water class data to be used as the input for this function.
Default is "defined_water".

ebct The empty bed contact time (min) used for the biofilter

ozonated Logical; TRUE if the water is ozonated (default), FALSE otherwise

Details

The data input comes from a ‘water‘ class column, as initialized in define_water_chain.

If the input data frame has column(s) named "ebct" or "ozonated", the function uses those as argu-
ments. Note: The function can use either a column or the direct function arguments, not both.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with updated DOC, TOC, and BDOC concentrations.

See Also

biofilter_toc

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
biofilter_toc_once(input_water = "defined_water", ebct = 10, ozonated = FALSE)

example_df <- water_df %>%
define_water_chain() %>%
mutate(



blend_waters 11

ebct = rep(c(10, 15, 20), 4),
ozonated = c(rep(TRUE, 6), rep(FALSE, 6))

) %>%
biofilter_toc_once(input_water = "defined_water")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
biofilter_toc_once(input_water = "defined_water", ebct = c(10, 20))

# Optional: explicitly close multisession processing
plan(sequential)

blend_waters Determine blended water quality from multiple waters based on mass
balance and acid/base equilibrium

Description

This function takes a vector of waters defined by define_water and a vector of ratios and outputs
a new water object with updated ions and pH.

Usage

blend_waters(waters, ratios)

Arguments

waters Vector of source waters created by define_water

ratios Vector of ratios in the same order as waters. (Blend ratios must sum to 1)

Value

A water class object with blended water quality parameters.

See Also

define_water

Examples

water1 <- define_water(7, 20, 50)
water2 <- define_water(7.5, 20, 100, tot_nh3 = 2)
blend_waters(c(water1, water2), c(.4, .6))



12 blend_waters_chain

blend_waters_chain Apply ‘blend_waters‘ within a dataframe and output a column of ‘wa-
ter‘ class to be chained to other tidywater functions

Description

This function allows blend_waters to be added to a piped data frame.

Usage

blend_waters_chain(df, waters, ratios, output_water = "blended_water")

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain,

waters List of column names containing a water class to be blended

ratios List of column names or vector of blend ratios in the same order as waters.
(Blend ratios must sum to 1)

output_water name of output column storing updated parameters with the class, water. Default
is "blended_water".

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.
The ‘water‘ class columns to use in the function are specified as function arguments. Ratios may be
input as columns with varied ratios (in this case, input column names in the function arguments),
OR input as numbers directly.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with a water class column containing updated ions and pH.

See Also

blend_waters



blend_waters_once 13

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(naoh = 22) %>%
mutate(
ratios1 = .4,
ratios2 = .6

) %>%
blend_waters_chain(

waters = c("defined_water", "dosed_chem_water"),
ratios = c("ratios1", "ratios2"), output_water = "Blending_after_chemicals"

)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(naoh = 22, output_water = "dosed") %>%
blend_waters_chain(waters = c("defined_water", "dosed", "balanced_water"), ratios = c(.2, .3, .5))

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(naoh = 22, output_water = "dosed") %>%
blend_waters_chain(waters = c("defined_water", "dosed", "balanced_water"), ratios = c(.2, .3, .5))

# Optional: explicitly close multisession processing
plan(sequential)

blend_waters_once Apply ‘blend_waters‘ to a dataframe and output ‘water‘ slots as a
dataframe

Description

This function allows blend_waters to be added to a piped data frame.

Usage

blend_waters_once(df, waters, ratios)



14 blend_waters_once

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain

waters List of column names containing a water class to be blended

ratios List of column names or vector of blend ratios in the same order as waters.
(Blend ratios must sum to 1)

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.
The ‘water‘ class columns to use in the function are specified as function arguments. Ratios may be
input as columns with varied ratios (in this case, input column names in the function arguments),
OR input as numbers directly.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with blended water quality parameters.

See Also

blend_waters

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(naoh = 22, output_water = "dosed") %>%
mutate(
ratios1 = .4,
ratios2 = .6

) %>%
blend_waters_once(waters = c("defined_water", "dosed"), ratios = c("ratios1", "ratios2"))

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%



bromatecoeffs 15

chemdose_ph_chain(naoh = 22, output_water = "dosed") %>%
blend_waters_once(waters = c("defined_water", "dosed", "balanced_water"), ratios = c(.2, .3, .5))

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(naoh = 22, output_water = "dosed") %>%
blend_waters_once(waters = c("defined_water", "dosed", "balanced_water"), ratios = c(.2, .3, .5))

# Optional: explicitly close multisession processing
plan(sequential)

bromatecoeffs Data frame of bromate coefficients for predicting bromate formation
during ozonation

Description

A dataset containing coefficients for calculating ozone formation

Usage

bromatecoeffs

Format

A dataframe with 30 rows and 10 columns

model First author of source model
ammonia Either T or F, depending on whether the model applies to waters with ammonia present.
A First coefficient in bromate model
a Exponent in bromate model, associated with Br-
b Exponent in bromate model, associated with DOC
c Exponent in bromate model, associated with UVA
d Exponent in bromate model, associated with pH
e Exponent in bromate model, associated with Alkalinity
f Exponent in bromate model, associated with ozone dose
g Exponent in bromate model, associated with reaction time
h Exponent in bromate model, associated with ammonia (NH4+)
i Exponent in bromate model, associated with temperature
I Coefficient in bromate model, associated with temperature in the exponent. Either i or I are used,

not both.



16 calculate_corrosion

Source

Ozekin (1994), Sohn et al (2004), Song et al (1996), Galey et al (1997), Siddiqui et al (1994)

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

calculate_corrosion Calculate six corrosion and scaling indices (AI, RI, LSI, LI, CSMR,
CCPP)

Description

calculate_corrosion takes an object of class "water" created by define_water and calculates
corrosion and scaling indices.

Usage

calculate_corrosion(
water,
index = c("aggressive", "ryznar", "langelier", "ccpp", "larsonskold", "csmr"),
form = "calcite"

)

Arguments

water Source water of class "water" created by define_water

index The indices to be calculated. Default calculates all six indices: "aggressive",
"ryznar", "langelier", "ccpp", "larsonskold", "csmr" CCPP may not be able to be
calculated sometimes, so it may be advantageous to leave this out of the function
to avoid errors

form Form of calcium carbonate mineral to use for modelling solubility: "calcite"
(default), "aragonite", or "vaterite"

Details

Aggressiveness Index (AI), unitless - the corrosive tendency of water and its effect on asbestos
cement pipe.

Ryznar Index (RI), unitless - a measure of scaling potential.

Langelier Saturation Index (LSI), unitless - describes the potential for calcium carbonate scale
formation. Equations use empirical calcium carbonate solubilities from Plummer and Busenberg
(1982) and Crittenden et al. (2012) rather than calculated from the concentrations of calcium and
carbonate in the water.

Larson-skold Index (LI), unitless - describes the corrosivity towards mild steel.

Chloride-to-sulfate mass ratio (CSMR), mg Cl/mg SO4 - indicator of galvanic corrosion for lead
solder pipe joints.

Calcium carbonate precipitation potential (CCPP), mg/L as CaCO3 - a prediction of the mass of
calcium carbonate that will precipitate at equilibrium. A positive CCPP value indicates the amount

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


calculate_corrosion 17

of CaCO3 (mg/L as CaCO3) that will precipitate. A negative CCPP indicates how much CaCO3
can be dissolved in the water.

Value

A water class object with updated corrosion and scaling index slots.

Source

AWWA (1977)

Crittenden et al. (2012)

Langelier (1936)

Larson and Skold (1958)

Merrill and Sanks (1977a)

Merrill and Sanks (1977b)

Merrill and Sanks (1978)

Nguyen et al. (2011)

Plummer and Busenberg (1982)

Ryznar (1946)

Schock (1984)

Trussell (1998)

U.S. EPA (1980)

See reference list at https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

See Also

define_water

Examples

water <- define_water(
ph = 8, temp = 25, alk = 200, tot_hard = 200,
tds = 576, cl = 150, so4 = 200

) %>%
calculate_corrosion()

water <- define_water(ph = 8, temp = 25, alk = 100, tot_hard = 50, tds = 200) %>%
calculate_corrosion(index = c("aggressive", "ccpp"))

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


18 calculate_corrosion_chain

calculate_corrosion_chain

Apply ‘calculate_corrosion‘ to a dataframe and output a column of
‘water‘ class to be chained to other tidywater functions.

Description

This function allows calculate_corrosion to be added to a piped data frame. Up to six additional
columns will be added to the output ‘water‘ class column depending on what corrosion/scaling
indices are selected: Aggressive index (AI), Ryznar index (RI), Langelier saturation index (LSI),
Larson-Skold index (LI), chloride-to-sulfate mass ratio (CSMR) & calcium carbonate precipitation
potential (CCPP).

Usage

calculate_corrosion_chain(
df,
input_water = "defined_water",
output_water = "corrosion_indices",
index = c("aggressive", "ryznar", "langelier", "ccpp", "larsonskold", "csmr"),
form = "calcite"

)

Arguments

df a data frame containing a column, defined_water, which has already been com-
puted using define_water, and a column named for each of the chemicals being
dosed

input_water name of the column of water class data to be used as the input. Default is
"defined_water".

output_water name of output column storing updated indices with the class, water. Default is
"corrosion_indices".

index The indices to be calculated. Default calculates all six indices: "aggressive",
"ryznar", "langelier", "ccpp", "larsonskold", "csmr" CCPP may not be able to be
calculated sometimes, so it may be advantageous to leave this out of the function
to avoid errors

form Form of calcium carbonate mineral to use for modelling solubility: "calcite"
(default), "aragonite", or "vaterite"

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.
The ‘water‘ class column to use in the function is specified in the ‘input_water‘ argument (default
input ‘water‘ is "defined_water". The name of the output ‘water‘ class column defaults to "corro-
sion_indices", but may be altered using the ‘output_water‘ argument.



calculate_corrosion_once 19

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with updated corrosion and scaling index slots.

See Also

calculate_corrosion

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
slice_head(n = 2) %>% # used to make example run faster
define_water_chain() %>%
calculate_corrosion_chain()

example_df <- water_df %>%
slice_head(n = 2) %>% # used to make example run faster
define_water_chain() %>%
calculate_corrosion_chain(index = c("aggressive", "ccpp"))

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
calculate_corrosion_chain(index = c("aggressive", "ccpp"))

# Optional: explicitly close multisession processing
plan(sequential)

calculate_corrosion_once

Apply ‘calculate_corrosion‘ to a dataframe and create new columns
with up to 6 corrosion indices



20 calculate_corrosion_once

Description

This function allows calculate_corrosion to be added to a piped data frame. Up to six additional
columns will be added to the dataframe depending on what corrosion/scaling indices are selected:
Aggressive index (AI), Ryznar index (RI), Langelier saturation index (LSI), Larson-Skold index
(LI), chloride-to-sulfate mass ratio (CSMR) & calcium carbonate precipitation potential (CCPP).

Usage

calculate_corrosion_once(
df,
input_water = "defined_water",
index = c("aggressive", "ryznar", "langelier", "ccpp", "larsonskold", "csmr"),
form = "calcite"

)

Arguments

df a data frame containing a water class column, created using define_water

input_water name of the column of water class data to be used as the input. Default is
"defined_water".

index The indices to be calculated. Default calculates all six indices: "aggressive",
"ryznar", "langelier", "ccpp", "larsonskold", "csmr". CCPP may not be able
to be calculated sometimes, so it may be advantageous to leave this out of the
function to avoid errors

form Form of calcium carbonate mineral to use for modelling solubility: "calcite"
(default), "aragonite", or "vaterite"

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing specified corrosion and scaling indices.

See Also

calculate_corrosion



calculate_dic 21

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
slice_head(n = 2) %>% # used to make example run faster
define_water_chain() %>%
calculate_corrosion_once()

example_df <- water_df %>%
slice_head(n = 2) %>% # used to make example run faster
define_water_chain() %>%
calculate_corrosion_once(index = c("aggressive", "ccpp"))

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
calculate_corrosion_once(index = c("aggressive", "ccpp"))

# Optional: explicitly close multisession processing
plan(sequential)

calculate_dic Calculate dissolved inorganic carbon (DIC) from total carbonate

Description

This function takes a water class object defined by define_water and outputs a DIC (mg/L).

Usage

calculate_dic(water)

Arguments

water a water class object containing columns with all the parameters listed in define_water

Value

A numeric value for the calculated DIC.

See Also

define_water



22 calculate_hardness

Examples

example_dic <- define_water(8, 15, 200) %>%
calculate_dic()

calculate_hardness Calculate hardness from calcium and magnesium

Description

This function takes Ca and Mg in mg/L and returns hardness in mg/L as CaCO3

Usage

calculate_hardness(ca, mg, type = "total", startunit = "mg/L")

Arguments

ca Calcium concentration in mg/L as Ca

mg Magnesium concentration in mg/L as Mg

type "total" returns total hardness, "ca" returns calcium hardness. Defaults to "total"

startunit Units of Ca and Mg. Defaults to mg/L

Value

A numeric value for the total hardness in mg/L as CaCO3.

Examples

calculate_hardness(50, 10)

water_defined <- define_water(7, 20, 50, 100, 80, 10, 10, 10, 10, tot_po4 = 1)
calculate_hardness(water_defined@ca, water_defined@mg, "total", "M")



chemdose_chlordecay 23

chemdose_chlordecay Calculate chlorine decay

Description

calculates the decay of chlorine or chloramine based on the U.S. EPA’s Water Treatment Plant
Model (U.S. EPA, 2001).

Usage

chemdose_chlordecay(
water,
cl2_dose,
time,
treatment = "raw",
cl_type = "chlorine"

)

Arguments

water Source water object of class "water" created by define_water

cl2_dose Applied chlorine or chloramine dose (mg/L as cl2). Model results are valid for
doses between 0.995 and 41.7 mg/L for raw water, and for doses between 1.11
and 24.7 mg/L for coagulated water.

time Reaction time (hours). Chlorine decay model results are valid for reaction times
between 0.25 and 120 hours.Chloramine decay model does not have specified
boundary conditions.

treatment Type of treatment applied to the water. Options include "raw" for no treatment
(default), "coag" for water that has been coagulated or softened.

cl_type Type of chlorination applied, either "chlorine" (default) or "chloramine".

Details

Required arguments include an object of class "water" created by define_water, applied chlo-
rine/chloramine dose, type, reaction time, and treatment applied (options include "raw" for no
treatment, or "coag" for coagulated water). The function also requires additional water quality
parameters defined in define_water including TOC and UV254. The output is a new "water" class
with the calculated total chlorine value stored in the ’free_chlorine’ or ’combined_chlorine’ slot,
depending on what type of chlorine is dosed. When modeling residual concentrations through a
unit process, the U.S. EPA Water Treatment Plant Model applies a correction factor based on the
influent and effluent residual concentrations (see U.S. EPA (2001) equation 5-118) that may need
to be applied manually by the user based on the output.

Value

An updated disinfectant residual in the free_chlorine or combined chlorine water slot in units of M.
Use convert_units to convert to mg/L.



24 chemdose_chlordecay_chain

Source

U.S. EPA (2001)

See references list at: https://github.com/BrownandCaldwell/tidywater/wiki/References

Examples

example_cl2 <- suppressWarnings(define_water(8, 20, 66, toc = 4, uv254 = 0.2)) %>%
chemdose_chlordecay(cl2_dose = 2, time = 8)

chemdose_chlordecay_chain

Apply ‘chemdose_chlordecay‘ within a data frame and output a col-
umn of ‘water‘ class to be chained to other tidywater functions

Description

This function allows chemdose_chlordecay to be added to a piped data frame. Its output is a
‘water‘ class, and can therefore be used with "downstream" tidywater functions. free_chlorine or
combined_chlorine slots will be updated depending on chlorine type.

Usage

chemdose_chlordecay_chain(
df,
input_water = "defined_water",
output_water = "disinfected_water",
cl2_dose = 0,
time = 0,
treatment = "raw",
cl_type = "chlorine"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column named for the ap-
plied chlorine dose (cl2_dose), and a column for time in hours.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

output_water name of the output column storing updated parameters with the class, water.
Default is "disinfected_water".

cl2_dose Applied chlorine or chloramine dose (mg/L as cl2). Model results are valid for
doses between 0.995 and 41.7 mg/L for raw water, and for doses between 1.11
and 24.7 mg/L for coagulated water.

https://github.com/BrownandCaldwell/tidywater/wiki/References


chemdose_chlordecay_chain 25

time Reaction time (hours). Chlorine decay model results are valid for reaction times
between 0.25 and 120 hours. Chloramine decay model does not have specified
boundary conditions.

treatment Type of treatment applied to the water. Options include "raw" for no treatment
(default), "coag" for water that has been coagulated or softened.

cl_type Type of chlorination applied, either "chlorine" (default) or "chloramine".

Details

The data input comes from a ‘water‘ class column, as initialized in define_water_chain.

If the input data frame has a chlorine dose column (cl2_dose) or time column (time), the function
will use those columns. Note: The function can only take cl2_dose and time inputs as EITHER a
column or as function arguments, not both.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with updated chlorine residuals.

See Also

chemdose_chlordecay

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_chlordecay_chain(input_water = "balanced_water", cl2_dose = 4, time = 8)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(
cl2_dose = seq(2, 24, 2),
time = 30

) %>%
chemdose_chlordecay_chain(input_water = "balanced_water")



26 chemdose_chlordecay_once

example_df <- water_df %>%
mutate(br = 80) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(time = 8) %>%
chemdose_chlordecay_chain(
input_water = "balanced_water", cl2_dose = 6, treatment = "coag",
cl_type = "chloramine"

)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_chlordecay_chain(input_water = "balanced_water", cl2_dose = 4, time = 8)

# Optional: explicitly close multisession processing
plan(sequential)

chemdose_chlordecay_once

Apply ‘chemdose_chlordecay‘function within a data frame and output
a data frame

Description

This function allows chemdose_chlordecay to be added to a piped data frame. Its output is a data
frame containing columns for free_chlorine or combined_chlorine (depending on chlorine type).

Usage

chemdose_chlordecay_once(
df,
input_water = "defined_water",
cl2_dose = 0,
time = 0,
treatment = "raw",
cl_type = "chlorine"

)



chemdose_chlordecay_once 27

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_once. The df may include a column named for the applied
chlorine dose (cl2), and a column for time in hours.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

cl2_dose Applied chlorine or chloramine dose (mg/L as cl2). Model results are valid for
doses between 0.995 and 41.7 mg/L for raw water, and for doses between 1.11
and 24.7 mg/L for coagulated water.

time Reaction time (hours). Chlorine decay model results are valid for reaction times
between 0.25 and 120 hours. Chloramine decay model does not have specified
boundary conditions.

treatment Type of treatment applied to the water. Options include "raw" for no treatment
(default), "coag" for water that has been coagulated or softened.

cl_type Type of chlorination applied, either "chlorine" (default) or "chloramine".

Details

The data input comes from a ‘water‘ class column, as initialized in define_water_chain.

If the input data frame has a chlorine dose column (cl2) or time column (time), the function will
use those columns. Note: The function can only take cl2 and time inputs as EITHER a column or
as function arguments, not both.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with updated chlorine residuals.

See Also

chemdose_chlordecay

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
mutate(br = 50) %>%



28 chemdose_dbp

define_water_chain() %>%
balance_ions_chain() %>%
chemdose_chlordecay_once(input_water = "balanced_water", cl2_dose = 4, time = 8)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(

cl2_dose = seq(2, 24, 2),
time = 30

) %>%
chemdose_chlordecay_once(input_water = "balanced_water")

example_df <- water_df %>%
mutate(br = 80) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(time = 8) %>%
chemdose_chlordecay_once(

input_water = "balanced_water", cl2_dose = 6, treatment = "coag",
cl_type = "chloramine"

)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_chlordecay_once(input_water = "balanced_water", cl2_dose = 4, time = 8)

# Optional: explicitly close multisession processing
plan(sequential)

chemdose_dbp Calculate DBP formation

Description

chemdose_dbp calculates disinfection byproduct (DBP) formation based on the U.S. EPA’s Water
Treatment Plant Model (U.S. EPA, 2001). Required arguments include an object of class "water"
created by define_water chlorine dose, type, reaction time, and treatment applied (if any). The
function also requires additional water quality parameters defined in define_water including bro-
mide, TOC, UV254, temperature, and pH.



chemdose_dbp 29

Usage

chemdose_dbp(
water,
cl2,
time,
treatment = "raw",
cl_type = "chorine",
location = "plant"

)

Arguments

water Source water object of class "water" created by define_water

cl2 Applied chlorine dose (mg/L as Cl2). Model results are valid for doses between
1.51 and 33.55 mg/L.

time Reaction time (hours). Model results are valid for reaction times between 2 and
168 hours.

treatment Type of treatment applied to the water. Options include "raw" for no treatment
(default), "coag" for water that has been coagulated or softened, and "gac" for
water that has been treated by granular activated carbon (GAC). GAC treatment
has also been used for estimating formation after membrane treatment with good
results.

cl_type Type of chlorination applied, either "chlorine" (default) or "chloramine".

location Location for DBP formation, either in the "plant" (default), or in the distributions
system, "ds".

Details

The function will calculate haloacetic acids (HAA) as HAA5, and total trihalomethanes (TTHM).
Use summarise_wq to quickly tabulate the results.

Value

A water class object with predicted DBP concentrations.

Source

TTHMs, raw: U.S. EPA (2001) equation 5-131

HAAs, raw: U.S. EPA (2001) equation 5-134

TTHMs, treated: U.S. EPA (2001) equation 5-139

HAAs, treated: U.S. EPA (2001) equation 5-142

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


30 chemdose_dbp_chain

Examples

example_dbp <- suppressWarnings(define_water(8, 20, 66, toc = 4, uv254 = .2, br = 50)) %>%
chemdose_dbp(cl2 = 2, time = 8)

example_dbp <- suppressWarnings(define_water(7.5, 20, 66, toc = 4, uv254 = .2, br = 50)) %>%
chemdose_dbp(cl2 = 3, time = 168, treatment = "coag", location = "ds")

chemdose_dbp_chain Apply ‘chemdose_dbp‘ within a data frame and output a column of
‘water‘ class to be chained to other tidywater functions

Description

DBP = disinfection byproduct

Usage

chemdose_dbp_chain(
df,
input_water = "defined_water",
output_water = "disinfected_water",
cl2 = 0,
time = 0,
treatment = "raw",
cl_type = "chlorine",
location = "plant"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column named for the ap-
plied chlorine dose (cl2), and a column for time.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

output_water name of the output column storing updated parameters with the class, water.
Default is "disinfected_water".

cl2 Applied chlorine dose (mg/L as Cl2). Model results are valid for doses between
1.51 and 33.55 mg/L.

time Reaction time (hours). Model results are valid for reaction times between 2 and
168 hours.

treatment Type of treatment applied to the water. Options include "raw" for no treatment
(default), "coag" for water that has been coagulated or softened, and "gac" for
water that has been treated by granular activated carbon (GAC). GAC treatment
has also been used for estimating formation after membrane treatment with good
results.



chemdose_dbp_chain 31

cl_type Type of chlorination applied, either "chlorine" (default) or "chloramine".

location Location for DBP formation, either in the "plant" (default), or in the distribution
system, "ds".

Details

This function allows chemdose_dbp to be added to a piped data frame. Its output is a ‘water‘ class,
and can therefore be used with "downstream" tidywater functions. TTHM, HAA5, and individual
DBP species will be updated based on the applied chlorine dose, the reaction time, treatment type,
chlorine type, and DBP formation location.

The data input comes from a ‘water‘ class column, as initialized in define_water or balance_ions.

If the input data frame has a chlorine dose column (cl2) or time column (time), the function will use
those columns. Note: The function can only take cl2 and time inputs as EITHER a column or from
the function arguments, not both.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with predicted DBP concentrations.

See Also

chemdose_dbp

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_dbp_chain(input_water = "balanced_water", cl2 = 4, time = 8)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(
cl2 = seq(2, 24, 2),
time = 30

) %>%



32 chemdose_dbp_once

chemdose_dbp_chain(input_water = "balanced_water")

example_df <- water_df %>%
mutate(br = 80) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(time = 8) %>%
chemdose_dbp_chain(

input_water = "balanced_water", cl = 6, treatment = "coag",
location = "ds", cl_type = "chloramine"

)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_dbp_chain(input_water = "balanced_water", cl2 = 4, time = 8)

# Optional: explicitly close multisession processing
plan(sequential)

chemdose_dbp_once Apply ‘chemdose_dbp‘function within a data frame and output a data
frame

Description

DBP = disinfection byproduct

Usage

chemdose_dbp_once(
df,
input_water = "defined_water",
cl2 = 0,
time = 0,
treatment = "raw",
cl_type = "chlorine",
location = "plant"

)



chemdose_dbp_once 33

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_once. The df may include a column named for the applied
chlorine dose (cl2), and a column for time.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

cl2 Applied chlorine dose (mg/L as Cl2). Model results are valid for doses between
1.51 and 33.55 mg/L.

time Reaction time (hours). Model results are valid for reaction times between 2 and
168 hours.

treatment Type of treatment applied to the water. Options include "raw" for no treatment
(default), "coag" for water that has been coagulated or softened, and "gac" for
water that has been treated by granular activated carbon (GAC). GAC treatment
has also been used for estimating formation after membrane treatment with good
results.

cl_type Type of chlorination applied, either "chlorine" (default) or "chloramine".

location Location for DBP formation, either in the "plant" (default), or in the distribution
system, "ds".

Details

This function allows chemdose_dbp to be added to a piped data frame. Its output is a data frame
containing columns for TTHM, HAA5, and individual DBP species. DBPs are estimated based
on the applied chlorine dose, the reaction time, treatment type, chlorine type, and DBP formation
location.

The data input comes from a ‘water‘ class column, as initialized in define_water or balance_ions.

If the input data frame has a chlorine dose column (cl2) or time column (time), the function will use
those columns. Note: The function can only take cl2 and time inputs as EITHER a column or from
the function arguments, not both.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with predicted DBP concentrations.

See Also

chemdose_dbp



34 chemdose_f

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_dbp_once(input_water = "balanced_water", cl2 = 4, time = 8)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(
cl2 = seq(2, 24, 2),
time = 30

) %>%
chemdose_dbp_once(input_water = "balanced_water")

example_df <- water_df %>%
mutate(br = 80) %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(time = 8) %>%
chemdose_dbp_once(

input_water = "balanced_water", cl = 6, treatment = "coag",
location = "ds", cl_type = "chloramine"

)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

mutate(br = 50) %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_dbp_once(input_water = "balanced_water", cl2 = 4, time = 8)

# Optional: explicitly close multisession processing
plan(sequential)

chemdose_f Calculate new fluoride concentration after dosing alum.



chemdose_ph 35

Description

Applies equation of the form: raw_f - A*alum^a*ph ^ b * raw_f^c. There is no published model,
so it is recommended to fit the coefficients with experimental data. When fitting, the following
units must be used: Alum in mg/L as chemical, Fluoride in mg/L, pH in SU. Default coefficients
are fit from Sollo et al (1978). This function outputs a water class object with an updated fluoride
concentration (which will be in M, per standard water units).

Usage

chemdose_f(water, alum, coeff = c(1.11, 0.628, -2.07, 0.861))

Arguments

water Source water object of class "water" created by define_water

alum Amount of hydrated aluminum sulfate added in mg/L: Al2(SO4)3*14H2O +
6HCO3 -> 2Al(OH)3(am) +3SO4 + 14H2O + 6CO2

coeff Model coefficients to use as vector of numbers.

Value

A water class object with an updated fluoride concentration.

Examples

dosed_water <- define_water(ph = 7, temp = 25, alk = 50, f = 4) %>%
chemdose_ph(alum = 50) %>%
chemdose_f(alum = 50)

convert_units(dosed_water@f, "f", "M", "mg/L")

chemdose_ph Calculate new pH and ion balance after chemical addition

Description

chemdose_ph calculates the new pH, alkalinity, and ion balance of a water based on different chem-
ical additions.

Usage

chemdose_ph(
water,
hcl = 0,
h2so4 = 0,
h3po4 = 0,
co2 = 0,



36 chemdose_ph

naoh = 0,
caoh2 = 0,
mgoh2 = 0,
na2co3 = 0,
nahco3 = 0,
caco3 = 0,
cacl2 = 0,
cl2 = 0,
naocl = 0,
nh4oh = 0,
nh42so4 = 0,
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
ach = 0,
softening_correction = FALSE

)

Arguments

water Source water object of class "water" created by define_water

hcl Amount of hydrochloric acid added in mg/L: HCl -> H + Cl

h2so4 Amount of sulfuric acid added in mg/L: H2SO4 -> 2H + SO4

h3po4 Amount of phosphoric acid added in mg/L: H3PO4 -> 3H + PO4

co2 Amount of carbon dioxide added in mg/L: CO2 (gas) + H2O -> H2CO3*

naoh Amount of caustic added in mg/L: NaOH -> Na + OH

caoh2 Amount of lime added in mg/L: Ca(OH)2 -> Ca + 2OH

mgoh2 Amount of magneisum hydroxide added in mg/L: Mg(OH)2 -> Mg + 2OH

na2co3 Amount of soda ash added in mg/L: Na2CO3 -> 2Na + CO3

nahco3 Amount of sodium bicarbonate added in mg/L: NaHCO3 -> Na + H + CO3

caco3 Amount of calcium carbonate added (or removed) in mg/L: CaCO3 -> Ca +
CO3

cacl2 Amount of calcium chloride added in mg/L: CaCl2 -> Ca2+ + 2Cl-

cl2 Amount of chlorine gas added in mg/L as Cl2: Cl2(g) + H2O -> HOCl + H + Cl

naocl Amount of sodium hypochlorite added in mg/L as Cl2: NaOCl -> Na + OCl

nh4oh Amount of ammonium hydroxide added in mg/L as N: NH4OH -> NH4 + OH

nh42so4 Amount of ammonium sulfate added in mg/L as N: (NH4)2SO4 -> 2NH4 + SO4

alum Amount of hydrated aluminum sulfate added in mg/L: Al2(SO4)3*14H2O +
6HCO3 -> 2Al(OH)3(am) +3SO4 + 14H2O + 6CO2

ferricchloride Amount of ferric Chloride added in mg/L: FeCl3 + 3HCO3 -> Fe(OH)3(am) +
3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L: Fe2(SO4)3*8.8H2O + 6HCO3 -> 2Fe(OH)3(am)
+ 3SO4 + 8.8H2O + 6CO2



chemdose_ph 37

ach Amount of aluminum chlorohydrate added in mg/L: Al2(OH)5Cl*2H2O + HCO3
-> 2Al(OH)3(am) + Cl + 2H2O + CO2

softening_correction

Set to TRUE to correct post-softening pH (caco3 must be < 0). Default is
FALSE. Based on WTP model equation 5-62

Details

The function takes an object of class "water" created by define_water and user-specified chemical
additions and returns a new object of class "water" with updated water quality. Units of all chemical
additions are in mg/L as chemical (not as product).

chemdose_ph works by evaluating all the user-specified chemical additions and solving for what
the new pH must be using uniroot to satisfy the principle of electroneutrality in pure water while
correcting for the existing alkalinity of the water that the chemical is added to. Multiple chemicals
can be added simultaneously or each addition can be modeled independently through sequential
doses.

Value

A water class object with updated pH, alkalinity, and ions post-chemical addition.

See Also

define_water, convert_units

Examples

water <- define_water(ph = 7, temp = 25, alk = 10)
# Dose 1 mg/L of hydrochloric acid
dosed_water <- chemdose_ph(water, hcl = 1)
dosed_water@ph

# Dose 1 mg/L of hydrochloric acid and 5 mg/L of alum simultaneously
dosed_water <- chemdose_ph(water, hcl = 1, alum = 5)
dosed_water@ph

# Dose 1 mg/L of hydrochloric acid and 5 mg/L of alum sequentially
dosed_water1 <- chemdose_ph(water, hcl = 1)
dosed_water1@ph
dosed_water2 <- chemdose_ph(dosed_water1, alum = 5)
dosed_water2@ph

# Softening:
water2 <- define_water(ph = 7, temp = 25, alk = 100, tot_hard = 350)
dosed_water1 <- chemdose_ph(water2, caco3 = -100)
dosed_water1@ph
dosed_water2 <- chemdose_ph(water2, caco3 = -100, softening_correction = TRUE)
dosed_water2@ph



38 chemdose_ph_chain

chemdose_ph_chain Apply ‘chemdose_ph‘ within a dataframe and output a column of ‘wa-
ter‘ class to be chained to other tidywater functions

Description

This function allows chemdose_ph to be added to a piped data frame. Its output is a ‘water‘ class,
and can therefore be used with "downstream" tidywater functions. Ions and pH will be updated
based on input chemical doses.

Usage

chemdose_ph_chain(
df,
input_water = "defined_water",
output_water = "dosed_chem_water",
hcl = 0,
h2so4 = 0,
h3po4 = 0,
co2 = 0,
naoh = 0,
na2co3 = 0,
nahco3 = 0,
caoh2 = 0,
mgoh2 = 0,
cl2 = 0,
naocl = 0,
nh4oh = 0,
nh42so4 = 0,
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
ach = 0,
caco3 = 0

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include columns named for the chem-
ical(s) being dosed.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

output_water name of the output column storing updated parameters with the class, water.
Default is "dosed_chem_water".

hcl Hydrochloric acid: HCl -> H + Cl



chemdose_ph_chain 39

h2so4 Sulfuric acid: H2SO4 -> 2H + SO4

h3po4 Phosphoric acid: H3PO4 -> 3H + PO4

co2 Carbon Dioxide CO2 (gas) + H2O -> H2CO3*

naoh Caustic: NaOH -> Na + OH

na2co3 Soda ash: Na2CO3 -> 2Na + CO3

nahco3 Sodium bicarbonate: NaHCO3 -> Na + H + CO3

caoh2 Lime: Ca(OH)2 -> Ca + 2OH

mgoh2 Magneisum hydroxide: Mg(OH)2 -> Mg + 2OH

cl2 Chlorine gas: Cl2(g) + H2O -> HOCl + H + Cl

naocl Sodium hypochlorite: NaOCl -> Na + OCl

nh4oh Amount of ammonium hydroxide added in mg/L as N: NH4OH -> NH4 + OH

nh42so4 Amount of ammonium sulfate added in mg/L as N: (NH4)2SO4 -> 2NH4 + SO4

alum Hydrated aluminum sulfate Al2(SO4)3*14H2O + 6HCO3 -> 2Al(OH)3(am)
+3SO4 + 14H2O + 6CO2

ferricchloride Ferric Chloride FeCl3 + 3HCO3 -> Fe(OH)3(am) + 3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L: Fe2(SO4)3*8.8H2O + 6HCO3 -> 2Fe(OH)3(am)
+ 3SO4 + 8.8H2O + 6CO2

ach Amount of aluminum chlorohydrate added in mg/L: Al2(OH)5Cl*2H2O + HCO3
-> 2Al(OH)3(am) + Cl + 2H2O + CO2

caco3 Amount of calcium carbonate added (or removed) in mg/L: CaCO3 -> Ca +
CO3

Details

The data input comes from a ‘water‘ class column, as initialized in define_water or balance_ions.

If the input data frame has a column(s) name matching a valid chemical(s), the function will dose
that chemical(s) in addition to the ones specified in the function’s arguments. The column names
must match the chemical names as displayed in chemdose_ph. To see which chemicals can be
passed into the function, see chemdose_ph.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with updated pH, alkalinity, and ions post-chemical
addition.

See Also

chemdose_ph



40 chemdose_ph_once

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(input_water = "balanced_water", naoh = 5)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(
hcl = seq(1, 12, 1),
naoh = 20

) %>%
chemdose_ph_chain(input_water = "balanced_water", mgoh2 = 55, co2 = 4)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(input_water = "balanced_water", naoh = 5)

# Optional: explicitly close multisession processing
plan(sequential)

chemdose_ph_once Apply ‘chemdose_ph‘ function and output a dataframe

Description

This function allows chemdose_ph to be added to a piped data frame. Its output is a data frame with
updated ions and pH.

Usage

chemdose_ph_once(
df,
input_water = "defined_water",
hcl = 0,
h2so4 = 0,
h3po4 = 0,
co2 = 0,
naoh = 0,



chemdose_ph_once 41

na2co3 = 0,
nahco3 = 0,
caoh2 = 0,
mgoh2 = 0,
cl2 = 0,
naocl = 0,
nh4oh = 0,
nh42so4 = 0,
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
ach = 0,
caco3 = 0

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include columns named for the chem-
ical(s) being dosed.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

hcl Hydrochloric acid: HCl -> H + Cl

h2so4 Sulfuric acid: H2SO4 -> 2H + SO4

h3po4 Phosphoric acid: H3PO4 -> 3H + PO4

co2 Carbon Dioxide CO2 (gas) + H2O -> H2CO3*

naoh Caustic: NaOH -> Na + OH

na2co3 Soda ash: Na2CO3 -> 2Na + CO3

nahco3 Sodium bicarbonate: NaHCO3 -> Na + H + CO3

caoh2 Lime: Ca(OH)2 -> Ca + 2OH

mgoh2 Magneisum hydroxide: Mg(OH)2 -> Mg + 2OH

cl2 Chlorine gas: Cl2(g) + H2O -> HOCl + H + Cl

naocl Sodium hypochlorite: NaOCl -> Na + OCl

nh4oh Amount of ammonium hydroxide added in mg/L as N: NH4OH -> NH4 + OH

nh42so4 Amount of ammonium sulfate added in mg/L as N: (NH4)2SO4 -> 2NH4 + SO4

alum Hydrated aluminum sulfate Al2(SO4)3*14H2O + 6HCO3 -> 2Al(OH)3(am)
+3SO4 + 14H2O + 6CO2

ferricchloride Ferric Chloride FeCl3 + 3HCO3 -> Fe(OH)3(am) + 3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L: Fe2(SO4)3*8.8H2O + 6HCO3 -> 2Fe(OH)3(am)
+ 3SO4 + 8.8H2O + 6CO2

ach Amount of aluminum chlorohydrate added in mg/L: Al2(OH)5Cl*2H2O + HCO3
-> 2Al(OH)3(am) + Cl + 2H2O + CO2

caco3 Amount of calcium carbonate added (or removed) in mg/L: CaCO3 -> Ca +
CO3



42 chemdose_ph_once

Details

The data input comes from a ‘water‘ class column, as initialized in define_water or balance_ions.

If the input data frame has a column(s) name matching a valid chemical(s), the function will dose
that chemical(s) in addition to the ones specified in the function’s arguments. The column names
must match the chemical names as displayed in chemdose_ph. To see which chemicals can be
passed into the function, see chemdose_ph.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with updated pH, alkalinity, and ions post-chemical addition.

See Also

chemdose_ph

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_once(input_water = "balanced_water", naoh = 5)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(
hcl = seq(1, 12, 1),
naoh = 20

) %>%
chemdose_ph_once(input_water = "balanced_water", mgoh2 = 55, co2 = 4)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_once(input_water = "balanced_water", naoh = 5)



chemdose_toc 43

# Optional: explicitly close multisession processing
plan(sequential)

chemdose_toc Determine TOC removal from coagulation

Description

This function applies the Edwards (1997) model to a water created by define_water to determine
coagulated DOC. Coagulated UVA is from U.S. EPA (2001) equation 5-80. Note that the models
rely on pH of coagulation. If only raw water pH is known, utilize chemdose_ph first.

Usage

chemdose_toc(
water,
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
coeff = "Alum"

)

Arguments

water Source water object of class "water" created by define_water. Water must
include ph, doc, and uv254

alum Amount of hydrated aluminum sulfate added in mg/L: Al2(SO4)3*14H2O +
6HCO3 -> 2Al(OH)3(am) +3SO4 + 14H2O + 6CO2

ferricchloride Amount of ferric chloride added in mg/L: FeCl3 + 3HCO3 -> Fe(OH)3(am) +
3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L: Fe2(SO4)3*8.8H2O + 6HCO3 -> 2Fe(OH)3(am)
+ 3SO4 + 8.8H2O + 6CO2

coeff String specifying the Edwards coefficients to be used from "Alum", "Ferric",
"General Alum", "General Ferric", or "Low DOC" or named vector of coeffi-
cients, which must include: k1, k2, x1, x2, x3, b

Value

A water class object with an updated DOC, TOC, and UV254 concentration.

Source

Edwards (1997)

U.S. EPA (2001)

See reference list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


44 chemdose_toc_chain

See Also

chemdose_ph

Examples

water <- define_water(ph = 7, temp = 25, alk = 100, toc = 3.7, doc = 3.5, uv254 = .1)
dosed_water <- chemdose_ph(water, alum = 30) %>%

chemdose_toc(alum = 30, coeff = "Alum")

dosed_water <- chemdose_ph(water, ferricsulfate = 30) %>%
chemdose_toc(ferricsulfate = 30, coeff = "Ferric")

dosed_water <- chemdose_ph(water, alum = 10, h2so4 = 10) %>%
chemdose_toc(alum = 10, coeff = c(
"x1" = 280, "x2" = -73.9, "x3" = 4.96,
"k1" = -0.028, "k2" = 0.23, "b" = 0.068

))

chemdose_toc_chain Apply ‘chemdose_toc‘ within a dataframe and output a column of ‘wa-
ter‘ class to be chained to other tidywater functions

Description

This function allows chemdose_toc to be added to a piped data frame. Its output is a ‘water‘ class,
and can therefore be used with "downstream" tidywater functions. TOC, DOC, and UV254 will be
updated based on input chemical doses.

Usage

chemdose_toc_chain(
df,
input_water = "defined_water",
output_water = "coagulated_water",
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
coeff = "Alum"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column named for the coag-
ulant being dosed, and a column named for the set of coefficients to use.

input_water name of the column of Water class data to be used as the input for this function.
Default is "defined_water".



chemdose_toc_chain 45

output_water name of the output column storing updated parameters with the class, Water.
Default is "coagulated_water".

alum Hydrated aluminum sulfate Al2(SO4)3*14H2O + 6HCO3 -> 2Al(OH)3(am)
+3SO4 + 14H2O + 6CO2

ferricchloride Ferric Chloride FeCl3 + 3HCO3 -> Fe(OH)3(am) + 3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L: Fe2(SO4)3*8.8H2O + 6HCO3 -> 2Fe(OH)3(am)
+ 3SO4 + 8.8H2O + 6CO2

coeff String specifying the Edwards coefficients to be used from "Alum", "Ferric",
"General Alum", "General Ferric", or "Low DOC" or named vector of coeffi-
cients, which must include: k1, k2, x1, x2, x3, b

Details

The data input comes from a ‘water‘ class column, as initialized in define_water or balance_ions.

If the input data frame has a coagulant(s) name matching a valid coagulant(s), the function will
dose that coagulant(s). Note: The function can only dose a coagulant either a column or from the
function arguments, not both.

The column names must match the chemical names as displayed in chemdose_toc. To see which
chemicals can be passed into the function, see chemdose_toc.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with updated DOC, TOC, and UV254 concentrations.

See Also

chemdose_toc

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(alum = 30) %>%
chemdose_toc_chain(input_water = "dosed_chem_water")

example_df <- water_df %>%



46 chemdose_toc_once

define_water_chain() %>%
balance_ions_chain() %>%
mutate(

ferricchloride = seq(1, 12, 1),
coeff = "Ferric"

) %>%
chemdose_toc_chain(input_water = "balanced_water")

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_toc_chain(input_water = "balanced_water", alum = 40, coeff = "General Alum")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_chain() %>%
mutate(ferricchloride = seq(1, 12, 1)) %>%
chemdose_toc_chain(input_water = "balanced_water", coeff = "Ferric")

# Optional: explicitly close multisession processing
plan(sequential)

chemdose_toc_once Apply ‘chemdose_toc‘ function and output a data frame

Description

This function allows chemdose_toc to be added to a piped data frame. Its output is a data frame
with updated TOC, DOC, and UV254.

Usage

chemdose_toc_once(
df,
input_water = "defined_water",
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
coeff = "Alum"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column named for the coag-
ulant being dosed, and a column named for the set of coefficients to use.



chemdose_toc_once 47

input_water name of the column of Water class data to be used as the input for this function.
Default is "defined_water".

alum Hydrated aluminum sulfate Al2(SO4)3*14H2O + 6HCO3 -> 2Al(OH)3(am)
+3SO4 + 14H2O + 6CO2

ferricchloride Ferric Chloride FeCl3 + 3HCO3 -> Fe(OH)3(am) + 3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L: Fe2(SO4)3*8.8H2O + 6HCO3 -> 2Fe(OH)3(am)
+ 3SO4 + 8.8H2O + 6CO2

coeff String specifying the Edwards coefficients to be used from "Alum", "Ferric",
"General Alum", "General Ferric", or "Low DOC" or named vector of coeffi-
cients, which must include: k1, k2, x1, x2, x3, b

Details

The data input comes from a ‘water‘ class column, as initialized in define_water or balance_ions.

If the input data frame has a column(s) name matching a valid coagulant(s), the function will dose
that coagulant(s). Note: The function can only dose a coagulant as either a column or from the
function arguments, not both.

The column names must match the coagulant names as displayed in chemdose_toc. To see which
coagulants can be passed into the function, see chemdose_toc.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with an updated DOC, TOC, and UV254 concentration.

See Also

chemdose_toc

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_ph_chain(alum = 30) %>%
chemdose_toc_once(input_water = "dosed_chem_water")



48 chloramine_conv

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(
ferricchloride = seq(1, 12, 1),
coeff = "Ferric"

) %>%
chemdose_toc_once(input_water = "balanced_water")

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
chemdose_toc_once(input_water = "balanced_water", alum = 40, coeff = "General Alum")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_chain() %>%
mutate(ferricchloride = seq(1, 12, 1)) %>%
chemdose_toc_once(input_water = "balanced_water", coeff = "Ferric")

# Optional: explicitly close multisession processing
plan(sequential)

chloramine_conv Data frame of conversion factors for estimating DBP formation from
chloramines

Description

A dataset containing conversion factors for calculating DBP formation

Usage

chloramine_conv

Format

A dataframe with 17 rows and 3 columns

ID abbreviation of dbp species

alias full name of dbp species

percent specifies the percent of DBP formation predicted from chloramines compared to chlorine,
assuming the same chlorine dose applied



cl2coeffs 49

Source

U.S. EPA (2001), Table 5-10

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

cl2coeffs Data frame of Cl2 decay coefficients

Description

A dataset containing coefficients for calculating Cl2 decay

Usage

cl2coeffs

Format

A dataframe with 3 rows and 4 columns

treatment Specifies the treatment applied to the water

a Coefficient in chlorine decay model, associated with chlorine dose and time

b Coefficient in chlorine decay model, associated with chlorine dose & organics

c Exponent in chlorine decay model, associated with chlorine dose & organics

Source

U.S. EPA (2001)

convert_units Calculate unit conversions for common compounds

Description

This function takes a value and converts units based on compound name.

Usage

convert_units(value, formula, startunit = "mg/L", endunit = "M")

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


50 convert_water

Arguments

value Value to be converted

formula Chemical formula of compound. Accepts compounds in mweights for conver-
sions between g and mol or eq

startunit Units of current value, currently accepts g/L; g/L CaCO3; g/L N; M; eq/L; and
the same units with "m", "u", "n" prefixes

endunit Desired units, currently accepts same as start units

Value

A numeric value for the converted parameter.

Examples

convert_units(50, "ca") # converts from mg/L to M by default
convert_units(50, "ca", "mg/L", "mg/L CaCO3")
convert_units(50, "ca", startunit = "mg/L", endunit = "eq/L")

convert_water Convert ‘water‘ class object to a dataframe

Description

This converts a ‘water‘ class to a dataframe with individual columns for each slot (water quality
parameter) in the ‘water‘. This is useful for one-off checks and is applied in all ‘fn_once‘ tidywater
functions. For typical applications, there may be a ‘fn_once‘ tidywater function that provides a
more efficient solution.

Usage

convert_water(water)

Arguments

water A water class object

Value

A data frame containing columns for all non-NA water slots.

See Also

define_water



convert_watermg 51

Examples

library(dplyr)
library(tidyr)

# Generates 1 row dataframe
example_df <- define_water(ph = 7, temp = 20, alk = 100) %>%

convert_water()

example_df <- water_df %>%
define_water_chain() %>%
mutate(to_dataframe = map(defined_water, convert_water)) %>%
unnest(to_dataframe) %>%
select(-defined_water)

convert_watermg Convert a ‘water‘ class object to a dataframe with ions in mg/L or
ug/L

Description

This function is the same as convert_water except it converts the units of following slots from M
to mg/L: na, ca, mg, k, cl, so4, hco3, co3, h2po4, hpo4, po4, ocl, bro3, f, fe, al. These slots are
converted to ug/L: br, mn. All other values remain unchanged.

Usage

convert_watermg(water)

Arguments

water A water class object

Value

A data frame containing columns for all non-NA water slots with ions in mg/L.

Examples

water_defined <- define_water(7, 20, 50, 100, 80, 10, 10, 10, 10, tot_po4 = 1) %>%
convert_watermg()



52 dbp_correction

dbpcoeffs Data frame of DBP coefficients for predicting DBP formation

Description

A dataset containing coefficients for calculating DBP formation

Usage

dbpcoeffs

Format

A dataframe with 30 rows and 10 columns

ID abbreviation of dbp species

alias full name of dbp species

water_type specifies which model the constants apply to, either treated or untreated water

A First coefficient in DBP model

a Second coefficient in DBP model, associated with TOC or DOC

b Third coefficient in DBP model, associated with Cl2

c Fourth coefficient in DBP model, associated with Br-

d Fifth coefficient in DBP model, associated with temperature

e Sixth coefficient in DBP model, associated with pH

f Seventh coefficient in DBP model, associated with reaction time

Source

U.S. EPA (2001)

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

dbp_correction Data frame of correction factors for estimating DBP formation as a
function of location

Description

A dataset containing correction factors for calculating DBP formation

Usage

dbp_correction

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


define_water 53

Format

A dataframe with 17 rows and 4 columns

ID abbreviation of dbp species

alias full name of dbp species

plant specifies the correction factor for modelling DBP formation within a treatment plant

ds specifies the correction factor for modelling DBP formation within the distribution system

Source

U.S. EPA (2001), Table 5-7

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

define_water Create a water class object given water quality parameters

Description

This function takes user-defined water quality parameters and creates an S4 "water" class object
that forms the input and output of all tidywater models.

Usage

define_water(
ph,
temp = 25,
alk,
tot_hard,
ca,
mg,
na,
k,
cl,
so4,
free_chlorine = 0,
combined_chlorine = 0,
tot_po4 = 0,
tot_nh3 = 0,
tds,
cond,
toc,
doc,
uv254,
br,
f,
fe,

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


54 define_water

al,
mn

)

Arguments

ph water pH
temp Temperature in degree C
alk Alkalinity in mg/L as CaCO3
tot_hard Total hardness in mg/L as CaCO3
ca Calcium in mg/L Ca2+
mg Magnesium in mg/L Mg2+
na Sodium in mg/L Na+
k Potassium in mg/L K+
cl Chloride in mg/L Cl-
so4 Sulfate in mg/L SO42-
free_chlorine Free chlorine in mg/L as Cl2. Used when a starting water has a free chlorine

residual.
combined_chlorine

Combined chlorine (chloramines) in mg/L as Cl2. Used when a starting water
has a chloramine residual.

tot_po4 Phosphate in mg/L as PO4 3-. Used when a starting water has a phosphate
residual.

tot_nh3 Total ammonia in mg/L as N
tds Total Dissolved Solids in mg/L (optional if ions are known)
cond Electrical conductivity in uS/cm (optional if ions are known)
toc Total organic carbon (TOC) in mg/L
doc Dissolved organic carbon (DOC) in mg/L
uv254 UV absorbance at 254 nm (cm-1)
br Bromide in ug/L Br-
f Fluoride in mg/L F-
fe Iron in mg/L Fe3+
al Aluminum in mg/L Al3+
mn Manganese in ug/L Mn2+

Details

Carbonate balance is calculated and units are converted to mol/L. Ionic strength is determined from
ions, TDS, or conductivity. Missing values are handled by defaulting to 0 or NA. Calcium hardness
defaults to 65 manually specify all ions in the define_water arguments. The following equations
are used to determine ionic strength: Ionic strength (if TDS provided): Crittenden et al. (2012)
equation 5-38 Ionic strength (if electrical conductivity provided): Snoeyink & Jenkins (1980) Ionic
strength (from ion concentrations): Lewis and Randall (1921), Crittenden et al. (2012) equation 5-
37 Temperature correction of dielectric constant (relative permittivity): Harned and Owen (1958),
Crittenden et al. (2012) equation 5-45.



define_water_chain 55

Value

A water class object where slots are filled or calculated based on input parameters.

Examples

water_missingions <- define_water(ph = 7, temp = 15, alk = 100, tds = 10)
water_defined <- define_water(7, 20, 50, 100, 80, 10, 10, 10, 10, tot_po4 = 1)

define_water_chain Apply ‘define_water‘ within a dataframe and output a column of ‘wa-
ter‘ class to be chained to other tidywater functions

Description

This function allows define_water to be added to a piped data frame. Its output is a ‘water‘ class,
and can therefore be chained with "downstream" tidywater functions.

Usage

define_water_chain(df, output_water = "defined_water")

Arguments

df a data frame containing columns with all the parameters listed in define_water

output_water name of the output column storing updated parameters with the class, water.
Default is "defined_water".

Details

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column.

See Also

define_water



56 define_water_once

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_once()

example_df <- water_df %>%
define_water_chain(output_water = "This is a column of water") %>%
balance_ions_once(input_water = "This is a column of water")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
balance_ions_once()

#' #Optional: explicitly close multisession processing
plan(sequential)

define_water_once Apply ‘define_water‘ and output a dataframe

Description

This function allows define_water to be added to a piped data frame. It outputs all carbonate
calculations and other parameters in a data frame. tidywater functions cannot be added after this
function because they require a ‘water‘ class input.

Usage

define_water_once(df)

Arguments

df a data frame containing columns with all the parameters listed in define_water

Details

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.



discons 57

Value

A data frame containing columns that were filled or calculated based on define_water.

See Also

define_water

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>% define_water_once()

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>% define_water_once()

# Optional: explicitly close multisession processing
plan(sequential)

discons Dissociation constants and standard enthalpy for weak acids/bases

Description

Equilibrium constants (k) and corresponding standard enthalpy of reaction values (deltah) for sig-
nificant acids in water influencing pH at equilibrium. Includes carbonate, sulfate, phosphate, and
hypochlorite. Standard enthalpy of reaction is calculated by taking the sum of the enthalpy of for-
mation of each individual component minus the enthalpy of formation of the final product. e.g., the
standard enthalpy of reaction for water can be calculated as: deltah_h2o = deltah_f_oh + deltah_f_h
- deltah_f_h2o = -230 + 0 - (-285.83) = 55.83 kJ/mol. See MWH (2012) example 5-5 and Benjamin
(2002) eq. 2.96.

Usage

discons

Format

A dataframe with 8 rows and 3 columns

ID Coefficient type

k Equilibrium constant

deltah Standard enthalpy in J/mol



58 dissolve_pb

Source

Benjamin (2015) Appendix A.1 and A.2.

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

dissolve_pb Simulate contributions of various lead solids to total soluble lead

Description

This function takes a water data frame defined by define_water and outputs a dataframe of the
controlling lead solid and total lead solubility. Lead solid solubility is calculated based on control-
ling solid. Total dissolved lead species (tot_dissolved_pb, M) are calculated based on lead complex
calculations. Some lead solids have two k-constant options. The function will default to the EPA’s
default constants. The user may change the constants to hydroxypyromorphite = "Zhu" or pyromor-
phite = "Xie" or laurionite = "Lothenbach"

Usage

dissolve_pb(
water,
hydroxypyromorphite = "Schock",
pyromorphite = "Topolska",
laurionite = "Nasanen"

)

Arguments

water Source water object of class "water" created by define_water. Water must
include alk and is. If po4, cl, and so4 are known, those should also be included.

hydroxypyromorphite

defaults to "Schock", the constant, K, developed by Schock et al (1996). Can
also use "Zhu".

pyromorphite defaults to "Topolska", the constant, K, developed by Topolska et al (2016). Can
also use "Xie".

laurionite defaults to "Nasanen", the constant, K, developed by Nasanen & Lindell (1976).
Can also use "Lothenbach".

Details

The solid with lowest solubility will form the lead scale (controlling lead solid).

Make sure that total dissolved solids, conductivity, or ca, na, cl, so4 are used in ‘define_water‘ so
that an ionic strength is calculated.

Value

A data frame containing only the controlling lead solid and modeled dissolved lead concentration.

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


dissolve_pb_once 59

Source

Code is from EPA’s TELSS lead solubility dashboard https://github.com/USEPA/TELSS which
is licensed under MIT License: Permission is hereby granted, free of charge, to any person ob-
taining a copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions: The above copyright notice
and this permission notice shall be included in all copies or substantial portions of the Software.

Wahman et al. (2021)

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

See Also

define_water

Examples

example_pb <- define_water(
ph = 7.5, temp = 25, alk = 93, cl = 240,
tot_po4 = 0, so4 = 150, tds = 200

) %>%
dissolve_pb()

example_pb <- define_water(
ph = 7.5, temp = 25, alk = 93, cl = 240,
tot_po4 = 0, so4 = 150, tds = 200

) %>%
dissolve_pb(pyromorphite = "Xie")

dissolve_pb_once Apply ‘dissolve_pb‘ to a dataframe and create a new column with nu-
meric dose

Description

This function allows dissolve_pb to be added to a piped data frame. Two additional columns will
be added to the dataframe; the name of the controlling lead solid, and total dissolved lead (M).

Usage

dissolve_pb_once(
df,
input_water = "defined_water",
output_col_solid = "controlling_solid",
output_col_result = "pb",
hydroxypyromorphite = "Schock",
pyromorphite = "Topolska",

https://github.com/USEPA/TELSS
https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


60 dissolve_pb_once

laurionite = "Nasanen",
water_prefix = TRUE

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain

input_water name of the column of water class data to be used as the input. Default is
"defined_water".

output_col_solid

name of the output column storing the controlling lead solid. Default is "con-
trolling_solid".

output_col_result

name of the output column storing dissolved lead in M. Default is "pb".
hydroxypyromorphite

defaults to "Schock", the constant, K, developed by Schock et al (1996). Can
also use "Zhu".

pyromorphite defaults to "Topolska", the constant, K, developed by Topolska et al (2016). Can
also use "Xie".

laurionite defaults to "Nasanen", the constant, K, developed by Nasanen & Lindell (1976).
Can also use "Lothenbach".

water_prefix name of the input water used for the calculation, appended to the start of output
columns. Default is TRUE. Chenge to FALSE to remove the water prefix from
output column names.

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.
Use the ‘output_col_solid‘ and ‘output_col_result‘ arguments to name the ouput columns for the
controlling lead solid and total dissolved lead, respectively. The input ‘water‘ used for the calcu-
lation will be appended to the start of these output columns. Omit the input ‘water‘ in the output
columns, set ‘water_prefix‘ to FALSE (default is TRUE).

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing the controlling lead solid and modeled dissolved lead concentration as new
columns.

See Also

dissolve_pb



edwardscoeff 61

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
dissolve_pb_once(input_water = "balanced_water")

example_df <- water_df %>%
define_water_chain() %>%
dissolve_pb_once(output_col_result = "dissolved_lead", pyromorphite = "Xie")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
dissolve_pb_once(output_col_result = "dissolved_lead", laurionite = "Lothenbach")

# Optional: explicitly close multisession processing
plan(sequential)

edwardscoeff Data frame of Edwards model coefficients

Description

A dataset containing coefficients from the Edwards (1997) model for coagulation TOC removal.

Usage

edwardscoeff

Format

A dataframe with 5 rows and 7 columns:

ID Coefficient type

x3 x3 parameter

x2 x2 parameter

x1 x1 parameter

k1 k1 parameter

k2 k2 parameter

b b parameter



62 leadsol_constants

Source

Edwards (1997) Table 2.

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

leadsol_constants Data frame of equilibrium constants for lead and copper solubility

Description

A dataset containing equilibrium constants for lead solubility

Usage

leadsol_constants

Format

A dataframe with 38 rows and 3 columns

Solids:

species_name Name of lead solid or complex with possible _letter to cite different references

constant_name Reference ID for constants

log_value Equilibrium constant log value

source Source for equilibrium constant value

Source

Benjamin (2010)

Lothenbach et al. (1999)

Nasanen & Lindell (1976)

Powell et al. (2009)

Powell et al. (2005)

Schock et al. (1996)

Topolska et al. (2016)

Xie & Giammar (2007)

Zhu et al. (2015)

Wahman et al. (2021)

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References
https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


mweights 63

mweights Molar weights of relevant compounds

Description

A dataset containing the molar weights of several compounds in g/mol. Column names are lower-
case chemical formulas (with no charge), with the exception of the following coagulants: alum =
Al2(SO4)3*14H2O, ferricchloride = FeCl3, ferricsulfate = Fe2(SO4)3*8.8H2O,

Usage

mweights

Format

A dataframe with one row and one column per compound

ozonate_bromate Calculate bromate formation

Description

Calculates bromate (BrO3-, ug/L) formation based on selected model. Required arguments include
an object of class "water" created by define_water ozone dose, reaction time, and desired model.
The function also requires additional water quality parameters defined in define_water including
bromide, DOC or UV254 (depending on the model), pH, alkalinity (depending on the model), and
optionally, ammonia (added when defining water using the ‘tot_nh3‘ argument.)

Usage

ozonate_bromate(water, dose, time, model = "Ozekin")

Arguments

water Source water object of class "water" created by define_water

dose Applied ozone dose (mg/L as O3). Results typically valid for 1-10 mg/L, but
varies depending on model.

time Reaction time (minutes). Results typically valid for 1-120 minutes, but varies
depending on model.

model Model to apply. One of c("Ozekin", "Sohn", "Song", "Galey", "Siddiqui")

Value

A water class object with calculated bromate (ug/L).



64 ozonate_bromate_chain

Source

Ozekin (1994), Sohn et al (2004), Song et al (1996), Galey et al (1997), Siddiqui et al (1994)
See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

Examples

example_dbp <- suppressWarnings(define_water(8, 20, 66, toc = 4, uv254 = .2, br = 50)) %>%
ozonate_bromate(dose = 1.5, time = 5, model = "Ozekin")

example_dbp <- suppressWarnings(define_water(7.5, 20, 66, toc = 4, uv254 = .2, br = 50)) %>%
ozonate_bromate(dose = 3, time = 15, model = "Sohn")

ozonate_bromate_chain Apply ‘ozonate_bromate‘ within a data frame and output a column of
‘water‘ class to be chained to other tidywater functions

Description

This function allows ozonate_bromate to be added to a piped data frame. Its output is a ‘water‘
class, and can therefore be used with "downstream" tidywater functions. The bro3 slot will be
updated.

Usage

ozonate_bromate_chain(
df,
input_water = "defined_water",
output_water = "ozonated_water",
dose = 0,
time = 0,
model = "Ozekin"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column named for the ap-
plied ozone dose (dose), and a column for time in minutes.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

output_water name of the output column storing updated parameters with the class, water.
Default is "ozonated_water".

dose Applied ozone dose (mg/L as O3). Results typically valid for 1-10 mg/L, but
varies depending on model.

time Reaction time (minutes). Results typically valid for 1-120 minutes, but varies
depending on model.

model Model to apply, defaults to "Ozekin". One of c("Ozekin", "Sohn", "Song", "Ga-
ley", "Siddiqui")

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


ozonate_bromate_chain 65

Details

The data input comes from a ‘water‘ class column, as initialized in define_water_chain.

If the input data frame has a dose column (dose) or time column (time), the function will use those
columns. Note: The function can only take dose and time inputs as EITHER a column or as function
arguments, not both.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with updated bro3.

See Also

ozonate_bromate

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
ozonate_bromate_chain(dose = 4, time = 8)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
mutate(
dose = c(seq(.5, 3, .5), seq(.5, 3, .5)),
time = 30

) %>%
ozonate_bromate_chain()

example_df <- water_df %>%
mutate(br = 80) %>%
define_water_chain() %>%
mutate(time = 8) %>%
ozonate_bromate_chain(

dose = 6, model = "Sohn"
)



66 ozonate_bromate_once

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

mutate(br = 50) %>%
define_water_chain() %>%
ozonate_bromate_chain(dose = 4, time = 8)

# Optional: explicitly close multisession processing
plan(sequential)

ozonate_bromate_once Apply ‘ozonate_bromate‘function within a data frame and output a
data frame

Description

This function allows ozonate_bromate to be added to a piped data frame. Its output is a data frame
containing a bro3 column.

Usage

ozonate_bromate_once(
df,
input_water = "defined_water",
dose = 0,
time = 0,
model = "Ozekin"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_once. The df may include a column named for the applied
chlorine dose (cl2), and a column for time in minutes.

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

dose Applied ozone dose (mg/L as O3). Results typically valid for 1-10 mg/L, but
varies depending on model.

time Reaction time (minutes). Results typically valid for 1-120 minutes, but varies
depending on model.

model Model to apply, defaults to "Ozekin". One of c("Ozekin", "Sohn", "Song", "Ga-
ley", "Siddiqui")



ozonate_bromate_once 67

Details

The data input comes from a ‘water‘ class column, as initialized in define_water_chain.

If the input data frame has a dose column (dose) or time column (time), the function will use those
columns. Note: The function can only take dose and time inputs as EITHER a column or as function
arguments, not both.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with updated bromate.

See Also

ozonate_bromate

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain("raw") %>%
ozonate_bromate_once(input_water = "raw", dose = 3, time = 8)

example_df <- water_df %>%
mutate(br = 50) %>%
define_water_chain("raw") %>%
mutate(
dose = c(seq(.5, 3, .5), seq(.5, 3, .5)),
time = 10

) %>%
ozonate_bromate_once(input_water = "raw")

example_df <- water_df %>%
mutate(br = 80) %>%
define_water_chain("raw") %>%
mutate(time = 8) %>%
ozonate_bromate_once(

input_water = "raw", dose = 6, model = "Sohn"
)



68 pac_toc

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

mutate(br = 50) %>%
define_water_chain() %>%
ozonate_bromate_once(input_water = "defined_water", dose = 4, time = 8)

# Optional: explicitly close multisession processing
plan(sequential)

pac_toc Calculate DOC Concentration in PAC system

Description

Calculates DOC concentration multiple linear regression model found in 2-METHYLISOBORNEOL
AND NATURAL ORGANIC MATTER ADSORPTION BY POWDERED ACTIVATED CAR-
BON by HYUKJIN CHO (2007) Required arguments include an object of class "water" created by
define_water initial DOC concentration, amount of PAC added to system, contact time with PAC,
type of PAC

water must contain DOC or TOC value.

Usage

pac_toc(water, dose, time, type = "bituminous")

Arguments

water Source water object of class "water" created by define_water

dose Applied PAC dose (mg/L). Model results are valid for doses concentrations be-
tween 5 and 30 mg/L.

time Contact time (minutes). Model results are valid for reaction times between 10
and 1440 minutes

type Type of PAC applied, either "bituminous", "lignite", "wood".

Details

The function will calculate DOC concentration by PAC adsorption in drinking water treatment.
UV254 concentrations are predicted based on a linear relationship with DOC.

Value

A water class object with updated DOC, TOC, and UV254 slots.



pac_toc_chain 69

Source

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

CHO(2007)

Examples

water <- define_water(toc = 2.5, uv254 = .05, doc = 1.5) %>%
pac_toc(dose = 15, time = 50, type = "wood")

pac_toc_chain Apply ‘pac_toc‘ within a data frame and output a column of ‘water‘
class to be chained to other tidywater functions PAC = powdered ac-
tivated carbon

Description

This function allows pac_toc to be added to a piped data frame. Its output is a ‘water‘ class, and
can therefore be used with "downstream" tidywater functions.

Usage

pac_toc_chain(
df,
input_water = "defined_water",
output_water = "pac_water",
dose = 0,
time = 0,
type = "bituminous"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include columns named for the dose,
time, and type

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

output_water name of the output column storing updated parameters with the class, water.
Default is "pac_water".

dose Applied PAC dose (mg/L). Model results are valid for doses concentrations be-
tween 5 and 30 mg/L.

time Contact time (minutes). Model results are valid for reaction times between 10
and 1440 minutes

type Type of PAC applied, either "bituminous", "lignite", "wood".

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


70 pac_toc_chain

Details

The data input comes from a ‘water‘ class column, as initialized in define_water.

If the input data frame has a dose, time or type column, the function will use those columns. Note:
The function can only take dose, time, and type inputs as EITHER a column or from the function
arguments, not both.

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing a water class column with updated DOC, TOC, and UV254 slots

Source

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

CHO(2007)

See Also

pac_toc

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain("raw") %>%
pac_toc_chain(input_water = "raw", dose = 10, time = 20)

example_df <- water_df %>%
define_water_chain("raw") %>%
mutate(dose = seq(11, 22, 1), time = 30) %>%
pac_toc_chain(input_water = "raw")

example_df <- water_df %>%
define_water_chain("raw") %>%
mutate(time = 8) %>%
pac_toc_chain(
input_water = "raw", dose = 6, type = "wood"

)

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


pac_toc_once 71

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain("raw") %>%
pac_toc_chain(input_water = "raw", dose = 4, time = 8)

# Optional: explicitly close multisession processing
plan(sequential)

pac_toc_once Apply ‘pac_toc‘function within a data frame and output a data frame

Description

PAC = powdered activated carbon

Usage

pac_toc_once(
df,
input_water = "defined_water",
dose = 0,
time = 0,
type = "bituminous"

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include columns named for the dose,
time, and type

input_water name of the column of water class data to be used as the input for this function.
Default is "defined_water".

dose Applied PAC dose (mg/L). Model results are valid for doses concentrations be-
tween 5 and 30 mg/L.

time Contact time (minutes). Model results are valid for reaction times between 10
and 1440 minutes

type Type of PAC applied, either "bituminous", "lignite", "wood".

Details

This function allows pac_toc to be added to a piped data frame. Its output is a data frame containing
a water with updated TOC, DOC, and UV254.

The data input comes from a ‘water‘ class column, as initialized in define_water.

If the input data frame has a dose, time or type column, the function will use those columns. Note:
The function can only take dose, time, and type inputs as EITHER a column or from the function
arguments, not both.



72 pac_toc_once

tidywater functions cannot be added after this function because they require a ‘water‘ class input.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame with an updated DOC, TOC, and UV254 concentration.

Source

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

CHO(2007)

See Also

pac_toc

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain("raw") %>%
pac_toc_once(input_water = "raw", dose = 10, time = 20)

example_df <- water_df %>%
define_water_chain("raw") %>%
mutate(dose = seq(5, 60, 5), time = 30) %>%
pac_toc_once(input_water = "raw")

example_df <- water_df %>%
define_water_chain("raw") %>%
mutate(time = 8) %>%
pac_toc_once(
input_water = "raw", dose = 6, type = "wood"

)

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain("raw") %>%
pac_toc_once(input_water = "raw", dose = 4, time = 8)

# Optional: explicitly close multisession processing

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


plot_ions 73

plan(sequential)

plot_ions Create summary plot of ions from water class

Description

This function takes a water data frame defined by define_water and outputs an ion balance plot.

Usage

plot_ions(water)

Arguments

water Source water vector created by link function here

Value

A ggplot object displaying the water’s ion balance.

Examples

water_defined <- define_water(7, 20, 50, 100, 80, 10, 10, 10, 10, tot_po4 = 1)
plot_ions(water_defined)

pluck_water Pluck out a single parameter from a ‘water‘ class object

Description

This function plucks one or more selected parameters from selected columns of ‘water‘ class ob-
jects. The names of the output columns will follow the form ‘water_parameter‘ To view all slots as
columns, please use one of the ‘fn_once‘ functions or convert_water.

Usage

pluck_water(df, input_waters = c("defined_water"), parameter)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water

input_waters vector of names of the columns of water class data to be used as the input for
this function.

parameter vector of water class parameters to view outside the water column



74 solvecost_chem

Value

A data frame containing columns of selected parameters from a list of water class objects.

See Also

convert_water

Examples

library(dplyr)
library(furrr)
library(purrr)
library(tidyr)

pluck_example <- water_df %>%
define_water_chain() %>%
pluck_water(parameter = "tot_co3")

pluck_example <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
pluck_water(input_waters = c("defined_water", "balanced_water"), parameter = c("na", "cl"))

plan(multisession, workers = 2) # Remove the workers argument to use all available compute
pluck_example <- water_df %>%

define_water_chain() %>%
pluck_water(parameter = c("ph", "alk"))

# Optional: explicitly close multisession processing
plan(sequential)

solvecost_chem Determine chemical cost

Description

This function takes a chemical dose in mg/L, plant flow, chemical strength, and $/lb and calculates
cost.

Usage

solvecost_chem(dose, flow, strength = 100, cost, time = "day")

Arguments

dose Chemical dose in mg/L as chemical
flow Plant flow in MGD
strength Chemical product strength in percent. Defaults to 100 percent.
cost Chemical product cost in $/lb
time Desired output units, one of c("day", "month", "year"). Defaults to "day".



solvecost_labor 75

Value

A numeric value for chemical cost, $/time.

Examples

alum_cost <- solvecost_chem(dose = 20, flow = 10, strength = 49, cost = .22)

library(dplyr)
cost_data <- tibble(

dose = seq(10, 50, 10),
flow = 10

) %>%
mutate(costs = solvecost_chem(dose = dose, flow = flow, strength = 49, cost = .22))

solvecost_labor Determine labor cost

Description

This function takes number of FTE and annual $/FTE and determines labor cost

Usage

solvecost_labor(fte, cost, time = "day")

Arguments

fte Number of FTEs. Can be decimal.

cost $/year per FTE

time Desired output units, one of c("day", "month", "year"). Defaults to "day".

Value

A numeric value for labor $/time.

Examples

laborcost <- solvecost_labor(1.5, 50000)

library(dplyr)
cost_data <- tibble(

fte = seq(1, 10, 1)
) %>%

mutate(costs = solvecost_labor(fte = fte, cost = .08))



76 solvecost_solids

solvecost_power Determine power cost

Description

This function takes kW,

Usage

solvecost_power(power, utilization = 100, cost, time = "day")

Arguments

power Power consumed in kW

utilization Amount of time equipment is running in percent. Defaults to continuous.

cost Power cost in $/kWhr

time Desired output units, one of c("day", "month", "year"). Defaults to "day".

Value

A numeric value for power, $/time.

Examples

powercost <- solvecost_power(50, 100, .08)

library(dplyr)
cost_data <- tibble(

power = seq(10, 50, 10),
utilization = 80

) %>%
mutate(costs = solvecost_power(power = power, utilization = utilization, cost = .08))

solvecost_solids Determine solids disposal cost

Description

This function takes coagulant doses in mg/L as chemical, removed turbidity, and cost ($/lb) to
determine disposal cost.



solvecost_solids 77

Usage

solvecost_solids(
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
flow,
turb,
b = 1.5,
cost,
time = "day"

)

Arguments

alum Hydrated aluminum sulfate Al2(SO4)3*14H2O + 6HCO3 -> 2Al(OH)3(am)
+3SO4 + 14H2O + 6CO2

ferricchloride Ferric Chloride FeCl3 + 3HCO3 -> Fe(OH)3(am) + 3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L: Fe2(SO4)3*8.8H2O + 6HCO3 -> 2Fe(OH)3(am)
+ 3SO4 + 8.8H2O + 6CO2

flow Plant flow in MGD

turb Turbidity removed in NTU

b Correlation factor from turbidity to suspended solids. Defaults to 1.5.

cost Disposal cost in $/lb

time Desired output units, one of c("day", "month", "year"). Defaults to "day".

Value

A numeric value for disposal costs, $/time.

Source

https://water.mecc.edu/courses/ENV295Residuals/lesson3b.htm#:~:text=From

Examples

alum_solidscost <- solvecost_solids(alum = 50, flow = 10, turb = 2, cost = 0.05)

library(dplyr)
cost_data <- tibble(

alum = seq(10, 50, 10),
flow = 10

) %>%
mutate(costs = solvecost_solids(alum = alum, flow = flow, turb = 2, cost = 0.05))



78 solvect_chlorine

solvect_chlorine Determine disinfection credit from chlorine.

Description

This function takes a water defined by define_water and other disinfection parameters and outputs
a data frame of the required CT (‘ct_required‘), actual CT (‘ct_actual‘), and giardia log removal
(‘glog_removal‘).

Usage

solvect_chlorine(water, time, residual, baffle)

Arguments

water Source water object of class "water" created by define_water. Water must
include ph and temp

time Retention time of disinfection segment in minutes.
residual Minimum chlorine residual in disinfection segment in mg/L as Cl2.
baffle Baffle factor - unitless value between 0 and 1.

Details

CT actual is a function of time, chlorine residual, and baffle factor, whereas CT required is a func-
tion of pH, temperature, chlorine residual, and the standard 0.5 log removal of giardia requirement.
CT required is an empirical regression equation developed by Smith et al. (1995) to provide con-
servative estimates for CT tables in USEPA Disinfection Profiling Guidance. Log removal is a
rearrangement of the CT equations.

Value

A data frame of the required CT, actual CT, and giardia log removal.

Source

Smith et al. (1995)

USEPA (2020)

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

See Also

define_water

Examples

example_ct <- define_water(ph = 7.5, temp = 25) %>%
solvect_chlorine(time = 30, residual = 1, baffle = 0.7)

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


solvect_chlorine_once 79

solvect_chlorine_once Apply ‘solvect_chlorine‘ to a data frame and create new columns with
ct and log removals.

Description

This function allows solvect_chlorine to be added to a piped data frame. Three additional
columns will be added to the data frame; ct_required (mg/L*min), ct_actual (mg/L*min), glog_removal

Usage

solvect_chlorine_once(
df,
input_water = "defined_water",
time = 0,
residual = 0,
baffle = 0,
water_prefix = TRUE

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain

input_water name of the column of Water class data to be used as the input for this function.
Default is "defined_water".

time Retention time of disinfection segment in minutes.

residual Minimum chlorine residual in disinfection segment in mg/L as Cl2.

baffle Baffle factor - unitless value between 0 and 1.

water_prefix name of the input water used for the calculation will be appended to the start of
output columns. Default is TRUE.

Details

The data input comes from a ‘water‘ class column, initialized in define_water_chain.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing the original data frame and columns for required CT, actual CT, and giardia
log removal.



80 solvect_o3

Examples

library(dplyr)
ct_calc <- water_df %>%

define_water_chain() %>%
solvect_chlorine_once(residual = 2, time = 10)

ozone_resid <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
mutate(
residual = seq(1, 12, 1),
time = seq(2, 24, 2),
baffle = 0.7

) %>%
solvect_chlorine_once()

solvect_o3 Determine disinfection credit from ozone.

Description

This function takes a water defined by define_water and the first order decay curve parameters
from an ozone dose and outputs a dataframe of acutal CT, and log removal for giardia, virus, and
crypto

Usage

solvect_o3(water, time, dose, kd, baffle)

Arguments

water Source water object of class "water" created by define_water. Water must
include ph and temp

time Retention time of disinfection segment in minutes.

dose Ozone dose in mg/L. This value can also be the y intercept of the decay curve
(often slightly lower than ozone dose.)

kd First order decay constant. This parameter is optional. If not specified, the
default ozone decay equations will be used.

baffle Baffle factor - unitless value between 0 and 1.

Details

First order decay curve for ozone has the form: ‘residual = dose * exp(kd*time)‘. kd should be
a negative number. Actual CT is an integration of the first order curve. The first 30 seconds are
removed from the integral to account for instantaneous demand.



solvect_o3_once 81

Value

A data frame containing actual CT, giardia log removal, virus log removal, and crypto log removal.

Source

USEPA (2020) Equation 4-4 through 4-7 https://www.epa.gov/system/files/documents/2022-02/disprof_bench_3rules_final_508.pdf

See references list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

See Also

define_water

Examples

# Use kd from experimental data (recommended):
define_water(ph = 7.5, temp = 25) %>%

solvect_o3(time = 10, dose = 2, kd = -0.5, baffle = 0.9)
define_water(ph = 7.5, alk = 100, doc = 2, uv254 = .02, br = 50) %>%

solvect_o3(time = 10, dose = 2, baffle = 0.5)

solvect_o3_once Apply ‘solvect_o3‘ to a data frame and create new columns with ct
and log removals.

Description

This function allows solvect_o3 to be added to a piped data frame. Three additional columns will
be added to the data frame; ct_required (mg/L*min), ct_actual (mg/L*min), glog_removal

Usage

solvect_o3_once(
df,
input_water = "defined_water",
time = 0,
dose = 0,
kd = 0,
baffle = 0,
water_prefix = TRUE

)

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


82 solvect_o3_once

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain

input_water name of the column of Water class data to be used as the input for this function.
Default is "defined_water".

time Retention time of disinfection segment in minutes.

dose Ozone dose (mg/L as O3). This value can also be the y intercept of the decay
curve (often slightly lower than ozone dose.)

kd First order decay constant. This parameter is optional. If not specified, the
default ozone decay equations will be used.

baffle Baffle factor - unitless value between 0 and 1.

water_prefix name of the input water used for the calculation will be appended to the start of
output columns. Default is TRUE.

Details

The data input comes from a ‘water‘ class column, initialized in define_water_chain.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing the original data frame and columns for required CT, actual CT, and giardia
log removal.

Examples

library(dplyr)
ct_calc <- water_df %>%

define_water_chain() %>%
solvect_o3_once(dose = 2, kd = -0.5, time = 10)

ozone_resid <- water_df %>%
mutate(br = 50) %>%
define_water_chain() %>%
mutate(
dose = rep(seq(1, 4, 1), 3),
time = rep(seq(2, 8, 2), 3),
baffle = .5

) %>%
solvect_o3_once()



solvedose_alk 83

solvedose_alk Calculate a desired chemical dose for a target alkalinity

Description

This function calculates the required amount of a chemical to dose based on a target alkalinity and
existing water quality. Returns numeric value for dose in mg/L. Uses uniroot on the chemdose_ph
function.

Usage

solvedose_alk(water, target_alk, chemical)

Arguments

water Source water of class "water" created by define_water

target_alk The final alkalinity in mg/L as CaCO3 to be achieved after the specified chemi-
cal is added.

chemical The chemical to be added. Current supported chemicals include: acids: "hcl",
"h2so4", "h3po4", "co2", bases: "naoh", "na2co3", "nahco3", "caoh2", "mgoh2"

Value

A numeric value for the required chemical dose.

See Also

define_water

Examples

dose_required <- define_water(ph = 7.9, temp = 22, alk = 100, 80, 50) %>%
solvedose_alk(target_alk = 150, "naoh")

solvedose_alk_once Apply ‘solvedose_alk‘ to a dataframe and create a new column with
numeric dose

Description

This function allows solvedose_alk to be added to a piped data frame. Its output is a chemical
dose in mg/L.



84 solvedose_alk_once

Usage

solvedose_alk_once(
df,
input_water = "defined_water",
output_column = "dose_required",
target_alk = NULL,
chemical = NULL

)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column with names for each
of the chemicals being dosed.

input_water name of the column of water class data to be used as the input. Default is
"defined_water".

output_column name of the output column storing doses in mg/L. Default is "dose_required".

target_alk set a goal for alkalinity using the function argument or a data frame column

chemical select the chemical to be used to reach the desired alkalinity using function
argument or data frame column

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.

If the input data frame has column(s) named "target_alk" or "chemical", the function will use the
column(s) as function argument(s). If these columns aren’t present, specify "target_alk" or "chem-
ical" as function arguments. The chemical names must match the chemical names as displayed in
solvedose_alk. To see which chemicals can be dosed, see solvedose_alk.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing the original data frame and columns for target alkalinity, chemical dosed,
and required chemical dose.

See Also

solvedose_alk



solvedose_ph 85

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
balance_ions_chain() %>%
mutate(
target_alk = 300,
chemical = rep(c("naoh", "na2co3"), 6)

) %>%
solvedose_alk_once()

# When the selected chemical can't raise the alkalinity, the dose_required will be NA
# Eg,soda ash can't bring the alkalinity to 100 when the water's alkalinity is already at 200.

example_df <- water_df %>%
define_water_chain() %>%
solvedose_alk_once(input_water = "defined_water", target_alk = 100, chemical = "na2co3")

example_df <- water_df %>%
define_water_chain() %>%
mutate(target_alk = seq(100, 210, 10)) %>%
solvedose_alk_once(chemical = "na2co3")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
mutate(target_alk = seq(100, 210, 10)) %>%
solvedose_alk_once(chemical = "na2co3")

# Optional: explicitly close multisession processing
plan(sequential)

solvedose_ph Calculate a desired chemical dose for a target pH

Description

solvedose_ph calculates the required amount of a chemical to dose based on a target pH and
existing water quality. The function takes an object of class "water" created by define_water, and
user-specified chemical and target pH and returns a numeric value for the required dose in mg/L.



86 solvedose_ph_once

solvedose_ph uses uniroot on chemdose_ph to match the required dose for the requested pH
target.

Usage

solvedose_ph(water, target_ph, chemical)

Arguments

water Source water of class "water" created by define_water

target_ph The final pH to be achieved after the specified chemical is added.

chemical The chemical to be added. Current supported chemicals include: acids: "hcl",
"h2so4", "h3po4", "co2"; bases: "naoh", "na2co3", "nahco3", "caoh2", "mgoh2"

Value

A numeric value for the required chemical dose.

See Also

define_water, chemdose_ph

Examples

water <- define_water(ph = 7, temp = 25, alk = 10)

# Calculate required dose of lime to reach pH 8
solvedose_ph(water, target_ph = 8, chemical = "caoh2")

solvedose_ph_once Apply ‘solvedose_ph‘ to a dataframe and create a new column with
numeric dose

Description

This function allows solvedose_ph to be added to a piped data frame. Its output is a chemical dose
in mg/L.

Usage

solvedose_ph_once(
df,
input_water = "defined_water",
output_column = "dose_required",
target_ph = NULL,
chemical = NULL

)



solvedose_ph_once 87

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain. The df may include a column with names for each
of the chemicals being dosed.

input_water name of the column of water class data to be used as the input. Default is
"defined_water".

output_column name of the output column storing doses in mg/L. Default is "dose_required".

target_ph set a goal for pH using the function argument or a data frame column

chemical select the chemical to be used to reach the desired pH using function argument
or data frame column

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.

If the input data frame has column(s) named "target_ph" or "chemical", the function will use the
column(s) as function argument(s). If these columns aren’t present, specify "target_ph" or "chem-
ical" as function arguments. The chemical names must match the chemical names as displayed in
solvedose_ph. To see which chemicals can be dosed, see solvedose_ph.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing the original data frame and columns for target pH, chemical dosed, and
required chemical dose.

See Also

solvedose_ph

Examples

library(purrr)
library(furrr)
library(tidyr)
library(dplyr)

example_df <- water_df %>%
define_water_chain() %>%
mutate(
target_ph = 10,
chemical = rep(c("naoh", "mgoh2"), 6)

) %>%
solvedose_ph_once(input_water = "defined_water")



88 solvemass_chem

example_df <- water_df %>%
define_water_chain() %>%
solvedose_ph_once(input_water = "defined_water", target_ph = 8.8, chemical = "naoh")

example_df <- water_df %>%
define_water_chain() %>%
mutate(target_ph = seq(9, 10.1, .1)) %>%
solvedose_ph_once(chemical = "naoh")

# Initialize parallel processing
plan(multisession, workers = 2) # Remove the workers argument to use all available compute
example_df <- water_df %>%

define_water_chain() %>%
mutate(target_ph = seq(9, 10.1, .1)) %>%
solvedose_ph_once(chemical = "naoh")

# Optional: explicitly close multisession processing
plan(sequential)

solvemass_chem Convert mg/L of chemical to lb/day

Description

This function takes a chemical dose in mg/L, plant flow in MGD, and chemical strength and calcu-
lates lb/day of product

Usage

solvemass_chem(dose, flow, strength = 100)

Arguments

dose Chemical dose in mg/L as chemical

flow Plant flow in MGD

strength Chemical product strength in percent. Defaults to 100 percent.

Value

A numeric value for the chemical mass in lb/day.



solvemass_solids 89

Examples

alum_mass <- solvemass_chem(dose = 20, flow = 10, strength = 49)

library(dplyr)
mass_data <- tibble(

dose = seq(10, 50, 10),
flow = 10

) %>%
mutate(mass = solvemass_chem(dose = dose, flow = flow, strength = 49))

solvemass_solids Determine solids lb/day

Description

This function takes coagulant doses in mg/L as chemical, removed turbidity, and plant flow as MGD
to determine solids production.

Usage

solvemass_solids(
alum = 0,
ferricchloride = 0,
ferricsulfate = 0,
flow,
turb,
b = 1.5

)

Arguments

alum Amount of hydrated aluminum sulfate added in mg/L as chemical: Al2(SO4)3*14H2O
+ 6HCO3 -> 2Al(OH)3(am) +3SO4 + 14H2O + 6CO2

ferricchloride Amount of ferric chloride added in mg/L as chemical: FeCl3 + 3HCO3 ->
Fe(OH)3(am) + 3Cl + 3CO2

ferricsulfate Amount of ferric sulfate added in mg/L as chemical: Fe2(SO4)3*8.8H2O +
6HCO3 -> 2Fe(OH)3(am) + 3SO4 + 8.8H2O + 6CO2

flow Plant flow in MGD

turb Turbidity removed in NTU

b Correlation factor from turbidity to suspended solids. Defaults to 1.5.

Value

A numeric value for solids mass in lb/day.



90 solveresid_o3

Source

https://water.mecc.edu/courses/ENV295Residuals/lesson3b.htm#:~:text=From

Examples

solids_mass <- solvemass_solids(alum = 50, flow = 10, turb = 20)

library(dplyr)
mass_data <- tibble(

alum = seq(10, 50, 10),
flow = 10

) %>%
mutate(mass = solvemass_solids(alum = alum, flow = flow, turb = 20))

#'

solveresid_o3 Determine ozone decay

Description

This function applies the ozone decay model to a water created by define_water from U.S. EPA
(2001) equation 5-128.

Usage

solveresid_o3(water, dose, time)

Arguments

water Source water object of class "water" created by define_water.

dose Applied ozone dose in mg/L

time Ozone contact time in minutes

Value

A numeric value for the resiudal ozone.

Source

U.S. EPA (2001)

See reference list at: https://github.com/BrownandCaldwell-Public/tidywater/wiki/References

Examples

ozone_resid <- define_water(7, 20, 100, doc = 2, toc = 2.2, uv254 = .02, br = 50) %>%
solveresid_o3(dose = 2, time = 10)

https://github.com/BrownandCaldwell-Public/tidywater/wiki/References


solveresid_o3_once 91

solveresid_o3_once Apply ‘solveresid_o3‘ to a data frame and create a new column with
residual ozone dose

Description

This function allows solveresid_o3 to be added to a piped data frame. One additional column
will be added to the data frame; the residual ozone dose (mg/L)

Usage

solveresid_o3_once(df, input_water = "defined_water", dose = 0, time = 0)

Arguments

df a data frame containing a water class column, which has already been computed
using define_water_chain

input_water name of the column of Water class data to be used as the input for this function.
Default is "defined_water".

dose Applied ozone dose in mg/L

time Ozone contact time in minutes

Details

The data input comes from a ‘water‘ class column, initialized in define_water or balance_ions.

For large datasets, using ‘fn_once‘ or ‘fn_chain‘ may take many minutes to run. These types of
functions use the furrr package for the option to use parallel processing and speed things up. To
initialize parallel processing, use ‘plan(multisession)‘ or ‘plan(multicore)‘ (depending on your op-
erating system) prior to your piped code with the ‘fn_once‘ or ‘fn_chain‘ functions. Note, parallel
processing is best used when your code block takes more than a minute to run, shorter run times
will not benefit from parallel processing.

Value

A data frame containing the original data frame and columns for ozone dosed, time, and ozone
residual.

Examples

library(dplyr)
ozone_resid <- water_df %>%

mutate(br = 50) %>%
define_water_chain() %>%
solveresid_o3_once(dose = 2, time = 10)

ozone_resid <- water_df %>%
mutate(br = 50) %>%



92 summarize_wq

define_water_chain() %>%
mutate(

dose = seq(1, 12, 1),
time = seq(2, 24, 2)

) %>%
solveresid_o3_once()

summarize_wq Create summary table from water class

Description

This function takes a water data frame defined by define_water and outputs a formatted summary
table of specified water quality parameters.

summarise_wq() and summarize_wq() are synonyms.

Usage

summarize_wq(water, params = c("general"))

summarise_wq(water, params = c("general"))

Arguments

water Source water vector created by define_water.

params List of water quality parameters to be summarized. Options include "general",
"ions", "corrosion", and "dbps". Defaults to "general" only.

Details

Use calculate_corrosion for corrosivity indicators and chemdose_dbp for modeled DBP con-
centrations.

Value

A knitr_kable table of specified water quality parameters.

Examples

# Summarize general parameters
water_defined <- define_water(7, 20, 50, 100, 80, 10, 10, 10, 10, tot_po4 = 1)
summarize_wq(water_defined)

# Summarize major cations and anions
summarize_wq(water_defined, params = list("ions"))



water_df 93

water_df Data frame of water quality parameters

Description

A dataset containing fabricated water quality to use as tidywater inputs. Parameters are set to
reasonable water quality ranges. Parameters are as follows:

Usage

water_df

Format

A dataframe with 12 rows and 11 columns:

ph pH in standard units (SU)

temp Temperature in degree C

alk Alkalinity in mg/L as CaCO3

tot_hard Total hardness in mg/L as CaCO3

ca_hard Calcium hardness in mg/L as CaCO3

na Sodium in mg/L Na+

k Potassium in mg/L K+

cl Chloride in mg/L Cl-

so4 Sulfate in mg/L SO42-

tot_ocl Total chlorine in mg/L as Cl2

tot_po4 Total phosphate in mg/L as PO42-

Source

Fabricated for use in examples.



Index

∗ datasets
bromatecoeffs, 15
chloramine_conv, 48
cl2coeffs, 49
dbp_correction, 52
dbpcoeffs, 52
discons, 57
edwardscoeff, 61
leadsol_constants, 62
mweights, 63
water_df, 93

balance_ions, 3, 4–6, 12, 14, 18, 20, 31, 33,
39, 42, 45, 47, 60, 84, 87, 91

balance_ions_chain, 4
balance_ions_once, 5
biofilter_toc, 7, 8–10
biofilter_toc_chain, 8
biofilter_toc_once, 9
blend_waters, 11, 12–14
blend_waters_chain, 12
blend_waters_once, 13
bromatecoeffs, 15

calculate_corrosion, 16, 18–20, 92
calculate_corrosion_chain, 18
calculate_corrosion_once, 19
calculate_dic, 21
calculate_hardness, 22
chemdose_chlordecay, 23, 24–27
chemdose_chlordecay_chain, 24
chemdose_chlordecay_once, 26
chemdose_dbp, 28, 31, 33, 92
chemdose_dbp_chain, 30
chemdose_dbp_once, 32
chemdose_f, 34
chemdose_ph, 35, 38–40, 42–44, 86
chemdose_ph_chain, 38
chemdose_ph_once, 40
chemdose_toc, 43, 44–47

chemdose_toc_chain, 44
chemdose_toc_once, 46
chloramine_conv, 48
cl2coeffs, 49
convert_units, 23, 37, 49
convert_water, 50, 51, 73, 74
convert_watermg, 51

dbp_correction, 52
dbpcoeffs, 52
define_water, 3, 4, 7, 11, 12, 14, 16–18, 20,

21, 23, 28, 29, 31, 33, 35–37, 39, 42,
43, 45, 47, 50, 53, 55–60, 63, 68, 70,
71, 73, 78, 80, 81, 83–87, 90–92

define_water_chain, 4, 6, 8, 10, 12, 14, 24,
25, 27, 30, 38, 41, 44, 46, 55, 60, 64,
65, 67, 69, 71, 79, 82, 84, 87, 91

define_water_once, 27, 33, 56, 66
discons, 57
dissolve_pb, 58, 59, 60
dissolve_pb_once, 59

edwardscoeff, 61

leadsol_constants, 62

mweights, 63

ozonate_bromate, 63, 64–67
ozonate_bromate_chain, 64
ozonate_bromate_once, 66

pac_toc, 68, 69–72
pac_toc_chain, 69
pac_toc_once, 71
plot_ions, 73
pluck_water, 73

solvecost_chem, 74
solvecost_labor, 75
solvecost_power, 76

94



INDEX 95

solvecost_solids, 76
solvect_chlorine, 78, 79
solvect_chlorine_once, 79
solvect_o3, 80, 81
solvect_o3_once, 81
solvedose_alk, 83, 83, 84
solvedose_alk_once, 83
solvedose_ph, 85, 86, 87
solvedose_ph_once, 86
solvemass_chem, 88
solvemass_solids, 89
solveresid_o3, 90, 91
solveresid_o3_once, 91
summarise_wq (summarize_wq), 92
summarize_wq, 92

water_df, 93


	balance_ions
	balance_ions_chain
	balance_ions_once
	biofilter_toc
	biofilter_toc_chain
	biofilter_toc_once
	blend_waters
	blend_waters_chain
	blend_waters_once
	bromatecoeffs
	calculate_corrosion
	calculate_corrosion_chain
	calculate_corrosion_once
	calculate_dic
	calculate_hardness
	chemdose_chlordecay
	chemdose_chlordecay_chain
	chemdose_chlordecay_once
	chemdose_dbp
	chemdose_dbp_chain
	chemdose_dbp_once
	chemdose_f
	chemdose_ph
	chemdose_ph_chain
	chemdose_ph_once
	chemdose_toc
	chemdose_toc_chain
	chemdose_toc_once
	chloramine_conv
	cl2coeffs
	convert_units
	convert_water
	convert_watermg
	dbpcoeffs
	dbp_correction
	define_water
	define_water_chain
	define_water_once
	discons
	dissolve_pb
	dissolve_pb_once
	edwardscoeff
	leadsol_constants
	mweights
	ozonate_bromate
	ozonate_bromate_chain
	ozonate_bromate_once
	pac_toc
	pac_toc_chain
	pac_toc_once
	plot_ions
	pluck_water
	solvecost_chem
	solvecost_labor
	solvecost_power
	solvecost_solids
	solvect_chlorine
	solvect_chlorine_once
	solvect_o3
	solvect_o3_once
	solvedose_alk
	solvedose_alk_once
	solvedose_ph
	solvedose_ph_once
	solvemass_chem
	solvemass_solids
	solveresid_o3
	solveresid_o3_once
	summarize_wq
	water_df
	Index

